Cellular and Molecular Neurobiology

, Volume 25, Issue 1, pp 41–57 | Cite as

Rat Brain Endothelial Cell Lines for the Study of Blood–Brain Barrier Permeability and Transport Functions

Article

Summary

1. In vitro models of the BBB have been developed from cocultures between bovine, porcine, rodent or human brain capillary endothelial cells with rodent or human astrocytes. Since most in vivo BBB studies have been performed with small laboratory animals, especially rats, it is important to establish a rat brain endothelial (RBE) cell culture system that will allow correlations between in vitro and in vivo results. The present review will constitute a brief description of the best characterized RBE cell lines (RBE4, GP8/3.9, GPNT, RBEC1, TR-BBBs and rBCEC4 cell lines) and will summarize their recent and important contribution to our current knowledge of the BBB transport functions and permeability to blood-borne solutes, drugs, and cells.

2. In most cases, primary cultures of RBE cells were transduced with an immortalizing gene (SV40 or polyoma virus large T-antigen or adenovirus E1A), either by transfection of plasmid DNA or by infection using retroviral vectors. In one case however, the conditionally immortalized TR-BBB cell line was derived from primary cultures of brain endothelial cells of SV40-T-expressing transgenic rats.

3. All cell lines appear to have an endothelial morphology. The absence of foci formation would mean that the cells are not transformed. The endothelial origin is shown by the expression of Factor VIII-related antigen. Immortalized RBE cells express all the enzymes and transporters that are considered as specific for the blood–brain barrier endothelium, with similar characteristics to those expected from in vivo analyses, but at a significantly lower level. Some RBE cell lines are responsive to astroglial factors, such as RBE4 cells, rBEC4, and TR-BBB cells. None of the immortalized RBE cell lines appear to generate the necessary restrictive paracellular barrier properties that would allow to use them in transendothelial permeability screening.

4. RBE cell lines have been used to demonstrate that transporters such as organic cation transporter/carnitine transporter, serotonin transporter, and the ATA2 system A isoform are expressed in rat brain endothelium. When the transporter is shown to be expressed with the same properties in the immortalized RBE cells as in vivo, regulation studies may be initiated even if the transporter is down-regulated. Pharmacological applications have been proposed with well-characterized transporters such as monocarboxylic acid transporter-1, large neutral amino acid tansporter-1, nucleoside carrier systems, and P-glycoprotein. RBE cell monolayers have also been used to investigate the mechanism of the transendothelial transport of large molecules, such as immunoliposomes or nanoparticles, potentially useful as drug delivery vectors to the brain.

5. RBE4 and GP8 cell lines have been extensively used to demonstrate that intercellular adhesion molecule-1 (ICAM-1) engagement in brain endothelial cells triggers multiple signal transduction pathways. Using functional assays, it was established that ICAM-1 signaling is intimately and actively involved in facilitating lymphocyte infiltration.

6. Several RBE cell lines have been described, which constitute tentative in vitro models of the rat BBB. The major limitation of these models generally appears to be due to their relatively high paracellular permeability to small molecules, thus limiting their use for permeability studies. The strategies developed for the production of these RBE cell lines will enable the characterization of still more efficient permeability models, as well as the immortalization of human brain endothelial cells.

Key words

blood–brain barrier rat in vitro model cell culture brain capillary endothelial cell immortalized cell line permeability transporter efflux pump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, P., Etienne, S., Couraud, P. O., Calder, V., and Greenwood, J. (1999). Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J. Immunol. 162:2964–2973.PubMedGoogle Scholar
  2. Alyaudtin, R. N., Reichel, A., Lobenberg, R., Ramge, P., Kreuter, J., and Begley, D. J. (2001). Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J. Drug Target. 9:209–221.PubMedGoogle Scholar
  3. Andersson, U., Grankvist, K., Bergenheim, A. T., Behnam-Motlagh, P., Hedman, H., and Henriksson, R. (2002). Rapid induction of long-lasting drug efflux activity in brain vascular endothelial cells but not malignant glioma following irradiation. Med. Oncol. 19:1–9.PubMedCrossRefGoogle Scholar
  4. Bendayan, R., Lee, G., and Bendayan, M. (2002). Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc. Res. Tech. 57:365–380.PubMedCrossRefGoogle Scholar
  5. Bergmann, R., Brust, P., Scheunemann, M., Pietzsch, H. J., Seifert, S., Roux, F., and Johannsen, B. (2000). Assessment of the in vitro and in vivo properties of a 99 mTc-labeled inhibitor of the multidrug resistant gene product P-glycoprotein. Nucl. Med. Biol. 27:135–141.PubMedCrossRefGoogle Scholar
  6. Blasig, I. E., Giese, H., Schroeter, M. L., Sporbert, A., Utepbergenov, D. I., Buchwalow, I. B., Neubert, K., Schonfelder, G., Freyer, D., Schimke, I., Siems, W. E., Paul, M., Haseloff, R. F., and Blasig, R. (2001). •NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood–brain barrier. Microvasc. Res. 62:114–127.PubMedCrossRefGoogle Scholar
  7. Boado, R. J., Li, J. Y., Nagaya, M., Zhan, C., and Pardridge, W. M. (1999). Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc. Natl Acad. Sci. USA 96:12079–12084.PubMedCrossRefGoogle Scholar
  8. Brust, P., Friedrich, A., Krizbai, I. A., Bergmann, R., Roux, F., Ganapathy, V., and Johannsen, B. (2000). Functional expression of the serotonin transporter in immortalized rat brain microvessel endothelial cells. J. Neurochem. 74:1241–1248.PubMedCrossRefGoogle Scholar
  9. Butcher, E. C. (1991). Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell 67:1033–1036.PubMedCrossRefGoogle Scholar
  10. Calhau, C., Martel, F., Soares-da-Silva, P., Hipolito-Reis, C., and Azevedo, I. (2002). Regulation of [(3)H]MPP(+) transport by phosphorylation/dephosphorylation pathways in RBE4 cells: Role of ecto-alkaline phosphatase. Naunyn Schmiedebergs Arch. Pharmacol. 365:349–356.PubMedCrossRefGoogle Scholar
  11. Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buée-Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M. P. (1999). In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Delivery Rev. 36:165–178.CrossRefGoogle Scholar
  12. Cerletti, A., Drewe, J., Fricker, G., Eberle, A. N., and Huwyler, J. (2000). Endocytosis and transcytosis of an immunoliposome-based brain drug delivery system. J. Drug Target 8:435–446.PubMedCrossRefGoogle Scholar
  13. Cestelli, A., Catania, C., D’Agostin, S., Di Liegro, I., Licata, L., Schiera, G., Pitarresi, G. L., Savettieri, G., De Caro, V., Giandalia, G., and Giannola, L. I. (2001). Functional feature of a novel model of blood brain barrier: Studies on permeation of test compounds. J. Control. Release 76:139–147.PubMedCrossRefGoogle Scholar
  14. Chishty, M., Reichel, A., Abbott, N. J., and Begley, D. J. (2002). S-Adenosylmethionine is substrate for carrier mediated transport at the blood–brain barrier in vitro. Brain Res. 942:46–50.PubMedCrossRefGoogle Scholar
  15. Chishty, M., Reichel, A., Siva, J., Abbott, N. J., and Begley, D. J. (2001). Affinity for the P-glycoprotein efflux pump at the blood–brain barrier may explain the lack of CNS side-effects of modern antihistamines. J. Drug Target 9:223–228.PubMedCrossRefGoogle Scholar
  16. Cornford, E. M., Hyman, S., Cornford, M. E., and Clare-Salzler, M. (1995). Down-regulation of blood–brain glucose transport in the hyperglycemic nonobese diabetic mouse. Neurochem. Res. 20:869–873.PubMedCrossRefGoogle Scholar
  17. Couraud, P. O., Grennwood, J., Roux, F., and Adamson, P. (2003). Development and characterization of immortalized cerebral endothelial cell lines. In Nag, S. (ed.), The Blood–Brain Barrier, Biology and Research Protocols, Humana Press, Totowa, New Jersey, pp. 351–366.Google Scholar
  18. Deli, M. A., Abraham, C. S., Takahata, H., and Niwa, M. (2001). Tissue plasminogen activator inhibits P-glycoprotein activity in brain endothelial cells. Eur. J. Pharmacol. 411:R3–R5.PubMedCrossRefGoogle Scholar
  19. Demeuse, P., Fragner, P., Leroy-Noury, C., Mercier, C., Payen, L., Fardel, O., Couraud, P. O., and Roux, F. (2004). Puromycin selectively increases mdr1a expression in immortalised rat brain endothelial cell lines. J. Neurochem. 88:23–31PubMedCrossRefGoogle Scholar
  20. Durieu-Trautmann, O., Chaverot, N., Cazaubon, S., Strosberg, A. D., and Couraud, P. O. (1994). Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J. Biol. Chem. 269:12536–12540.PubMedGoogle Scholar
  21. Durieu-Trautmann, O., Federici, C., Creminon, C., Foignant-Chaverot, N., Roux, F., Claire, M., Strosberg, A. D., and Couraud, P. O. (1993). Nitric oxide and endothelin secretion by brain microvessel endothelial cells: Regulation by cyclic nucleotides. J. Cell. Physiol. 155:104–111.PubMedCrossRefGoogle Scholar
  22. El Hafny, B., Bourre, J. M., and Roux, F. (1996). Synergistic stimulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities by retinoic acid and astroglial factors immortalized in rat brain microvessel endothelial cells. J. Cell. Physiol. 167:451–460.PubMedCrossRefGoogle Scholar
  23. El Hafny, B., Cano, N., Piciotti, M., Regina, A., Scherrmann, J. M., and Roux, F. (1997). Role of P-glycoprotein in colchicine and vinblastine cellular kinetics in an immortalized rat brain microvessel endothelial cell line. Biochem. Pharmacol. 53:1735–1742.PubMedCrossRefGoogle Scholar
  24. Etienne, S., Adamson, P., Greenwood, J., Strosberg, A. D., Cazaubon, S., and Couraud, P. O. (1998). ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol. 161:5755–5761.PubMedGoogle Scholar
  25. Etienne-Manneville, S., Manneville, J. B., Adamson, P., Wilbourn, B., Greenwood, J., and Couraud, P. O. (2000). ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J. Immunol. 165:3375–3383.PubMedGoogle Scholar
  26. Friedrich, A., George, R. L., Bridges, C. C., Prasad, P. D., and Ganapathy, V. (2001). Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochim. Biophys. Acta 1512:299–307.PubMedCrossRefGoogle Scholar
  27. Friedrich, A., Prasad, P. D., Freyer, D., Ganapathy, V., and Brust, P. (2003). Molecular cloning and functional characterization of the OCTN2 transporter at the RBE4 cells, an in vitro model of the blood–brain barrier. Brain Res. 968:69–79.PubMedCrossRefGoogle Scholar
  28. Gaillard, P. J., Voorwinden, L. H., Nielsen, J. L., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D. (2001). Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 12:215–222.PubMedCrossRefGoogle Scholar
  29. Gomes, P., and Soares-da-Silva, P. (1999). L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE4. Brain Res. 829:143–150.PubMedCrossRefGoogle Scholar
  30. Greenwood, J., Pryce, G., Devine, L., Male, D. K., dos Santos, W. L., Calder, V. L., and Adamson, P. (1996). SV40 large T immortalized cell lines of the rat blood–brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J. Neuroimmunol. 71:51–63.PubMedCrossRefGoogle Scholar
  31. Greenwood, J., Wang, Y., and Calder, V. L. (1995). Lymphocyte adhesion and transendothelial migration in the central nervous system: The role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology 86:408–415.PubMedGoogle Scholar
  32. Gumbleton, M., and Audus, K. L. (2001). Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J. Pharm. Sci. 90:1681–1698.PubMedCrossRefGoogle Scholar
  33. Hosoya, K., Ohtsuki, S., and Terasaki, T. (2002). Recent advances in the brain-to-blood efflux transport across the blood–brain barrier. Int. J. Pharm. 248:15–29.PubMedCrossRefGoogle Scholar
  34. Hosoya, K. I., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M., and Terasaki, T. (2000). mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J. Drug. Target. 8:357–370.PubMedCrossRefGoogle Scholar
  35. Hughes, C. C., and Lantos, P. L. (1986). Brain capillary endothelial cells in vitro lack surface IgG Fc receptors. Neurosci. Lett. 68:100–106.PubMedCrossRefGoogle Scholar
  36. Huszti, Z., Madarasz, E., Schlett, K., Joo, F., Szabo, A., and Deli, M. (1997). Mercury-stimulated histamine uptake and binding in cultured astroglial and cerebral endothelial cells. J. Neurosci. Res. 48:71–81.PubMedCrossRefGoogle Scholar
  37. Huwyler, J., Cerletti, A., Fricker, G., Eberle, A. N., and Drewe, J. (2002). By-passing of P-glycoprotein using immunoliposomes. J. Drug. Target. 10:73–79.PubMedCrossRefGoogle Scholar
  38. Huwyler, J., Froidevaux, S., Roux, F., Eberle, A. N. (1999). Characterization of transferrin-receptor in an immortalized cell line of rat brain endothelial cells, RBE4. J. Recept. Signal. Transduct. Res. 19:729–739.PubMedCrossRefGoogle Scholar
  39. Joo, F. (1993). The blood–brain barrier in vitro: The second decade. Neurochem. Int. 23(6):499–521.PubMedCrossRefGoogle Scholar
  40. Karlstedt, K., Sallmen, T., Eriksson, K. S., Lintunen, M., Couraud, P. O., Joo, F., and Panula, P. (1999). Lack of histamine synthesis and down-regulation of H1 and H2 receptor mRNA levels by dexamethasone in cerebral endothelial cells. J. Cereb. Blood Flow Metab. 19:321–330.PubMedCrossRefGoogle Scholar
  41. Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K., and Terasaki, T. (2002). Regulation of taurine transport at the blood–brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J. Neurochem. 83:1188–1195.PubMedCrossRefGoogle Scholar
  42. Kido, Y., Tamai, I., Ohnari, A., Sai, Y., Kagami, T., Nezu, J., Nikaido, H., Hashimoto, N., Asano, M., and Tsuji, A. (2001a). Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood–brain barrier. J. Neurochem. 79:959–969.CrossRefGoogle Scholar
  43. Kido, Y., Tamai, I., Okamoto, M., Suzuki, F., and Tsuji, A. (2000). Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood–brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm. Res. 17:55–62.PubMedCrossRefGoogle Scholar
  44. Kido, Y., Tamai, I., Uchino, H., Suzuki, F., Sai, Y., and Tsuji, A. (2001b). Molecular and functional identification of large neutral amino acid transporters LAT1 and LAT2 and their pharmacological relevance at the blood–brain barrier. J. Pharm. Pharmacol. 53:497–503.CrossRefGoogle Scholar
  45. Kis, B., Szabo, C. S., Pataricza, J., Krizbai, I. A., Mezei, Z., Gecse, A., Telegdy, G., Papp, J. G., and Deli, M. A. (1999). Vasoactive substances produced by cultured rat brain endothelial cells. Eur. J. Pharmacol. 368:35–42.PubMedCrossRefGoogle Scholar
  46. Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999). Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic. Biol. Med. 27:667–672.PubMedCrossRefGoogle Scholar
  47. Mégard, I., Garrigues, A., Orlowki, S., Jorajuria, S., Clavette, P., Ezan, E., and Mabondzo, A. (2002). A co-culture-based model of human blood–brain barrier: Application to active transport of indinavir and in vivo–in vitro correlation. Brain Res. 927:153–167.PubMedCrossRefGoogle Scholar
  48. Mroczkowska, J. E., Roux, F. S., Nalecz, M. J., and Nalecz, K. A. (2000). Blood–brain barrier controls carnitine level in the brain: A study on a model system with RBE4 cells. Biochem. Biophys. Res. Commun. 267:433–437.PubMedCrossRefGoogle Scholar
  49. Ohtsuki, S., Asaba, H., Takanaga, H., Deguchi, T., Hosoya, K., Otagiri, M., and Terasaki, T. (2002). Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: Its involvement in neurotransmitter metabolite clearance from the brain. J. Neurochem. 83:57–66.PubMedCrossRefGoogle Scholar
  50. Pham, Y. T., Regina, A., Farinotti, R., Couraud, P., Wainer, I. W., Roux, F., and Gimenez, F. (2000). Interactions of racemic mefloquine and its enantiomers with P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochim. Biophys. Acta. 1524:212–219.PubMedGoogle Scholar
  51. Regina, A., Koman, A., Piciotti, M., El Hafny, B., Center, M. S., Bergmann, R., Couraud P. O., and Roux, F. (1998). Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71:705–715.PubMedCrossRefGoogle Scholar
  52. Regina, A., Morchoisne, S., Borson, N. D., McCall, A. L., Drewes, L. R., and Roux, F. (2001). Factor(s) released by glucose-deprived astrocyte enhance glucose transporter expression and activity in rat brain endothelial cells. Biochim. Biophys. Acta. 1540:233–242.PubMedCrossRefGoogle Scholar
  53. Regina, A., Romero, I. A., Greenwood, J., Adamson, P., Bourre, J. M., Couraud, P. O., and Roux, F. (1999). Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. J. Neurochem. 73:1954–1963.PubMedGoogle Scholar
  54. Regina, A., Roux, F., and Revest, P. A. (1997). Glucose transport in immortalized rat brain capillary endothelial cells in vitro: Transport activity and GLUT1 expression. Biochim. Biophys. Acta. 1335:135–143.PubMedGoogle Scholar
  55. Reichel, A., Abbott, N. J., and Begley, D. J. (2002). Evaluation of the RBE4 cell line to explore carrier-mediated drug delivery to the CNS via the L-system amino acid transporter at the blood–brain barrier. J. Drug Target 10:277–283.PubMedCrossRefGoogle Scholar
  56. Reichel, A., Begley, D. J., Abbott, N. J. (2000). Carrier-mediated delivery of metabotrophic glutamate receptor ligands to the central nervous system: Structural tolerance and potential of the L-system amino acid transporter at the blood–brain barrier. J. Cereb. Blood Flow Metab. 20:168–174.PubMedCrossRefGoogle Scholar
  57. Rist, R. J., Romero, I. A., Chan, M. W. K., Couraud, P. O., Roux, F., and Abbott, N. J. (1997). F-actin cytoskeleton and sucose permeability of immortalised brain microvascular endothelial cell monolayers: Effects of cAMP and astrocytic factors. Brain Res. 768:10–18.PubMedCrossRefGoogle Scholar
  58. Romero, I. A., Prevost, M. C., Perret, E., Adamson, P., Greenwood, J., Couraud, P. O., and Ozden, S. (2000). Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: Mechanisms of viral entry into the central nervous system. J. Virol. 74:6021–6030.PubMedCrossRefGoogle Scholar
  59. Romero, I. A., Rist, R. J., Aleshaiker, A., Abbott, N. J. (1997a). Metabolic and permeability changes caused by thiamine deficiency in immortalized rat brain microvessel endothelial cells. Brain Res. 756:133–140.CrossRefGoogle Scholar
  60. Romero, I. A., Rist, R. J., Chan, M. W., and Abbott, N. J. (1997b). Acute energy deprivation syndromes: Investigation of m-dinitrobenzene and alpha-chlorohydrin toxicity on immortalized rat brain microvessel endothelial cells. Neurotoxicology 18:781–791.Google Scholar
  61. Romero, I. A., Radewicz, K., Jubin, E., Michel, C. C., Greenwood, J., Couraud, P. O., and Adamson, P. (2003). Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci. Lett. 344:112–116.PubMedCrossRefGoogle Scholar
  62. Roux, F., Durieu-Trautmann, O., Chaverot, N., Claire, M., Mailly, P., Bourre, J. M., Strosberg, A. D., and Couraud, P. O. (1994). Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J. Cell. Physiol. 159:101–113.PubMedCrossRefGoogle Scholar
  63. Roux, F. S., Mokni, R., Hughes, C. C., Clouet, P. M., Lefauconnier, J. M., and Bourre, J. M. (1989). Lipid synthesis by rat brain microvessel endothelial cells in tissue culture. J. Neuropathol. Exp. Neurol. 48:437–447.PubMedCrossRefGoogle Scholar
  64. Sampaio-Maia, B., and Soares-Da-Silva, P. (2001). Inhibition of calcium-independent luminal uptake of L-dopa by calmodulin antagonists in immortalized rat capillary cerebral endothelial cells. Cell. Biol. Int. 25:245–252.PubMedCrossRefGoogle Scholar
  65. Takanaga, H., Tokuda, N., Ohtsuki, S., Hosoya, K., and Terasai, T. (2002). ATA2 is predominantly expressed as system A at the blood–brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol. Pharmacol. 61:1289–1296.PubMedCrossRefGoogle Scholar
  66. Tamai, I., Yamashita, J., Kido, Y., Ohnari, A., Sai, Y., Shima, Y., Naruhashi, K., Koizumi, S., and Tsuji, A. (2000). Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood–brain barrier. J. Pharmacol. Exp. Ther. 295:146–152.PubMedGoogle Scholar
  67. Terasaki, T., and Hosoya, K. (2001). Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull. 24:111–118.PubMedCrossRefGoogle Scholar
  68. Utepbergenov, D. I., Mertsch, K., Sporbert, A., Tenz, K., Paul, M., Haseloff, R. F., and Blasig, I. E. (1998). Nitric oxide protects blood–brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Lett. 424:197–201.PubMedCrossRefGoogle Scholar
  69. Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W., and Aschner, M. (2001). Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Brain Res. Mol. Brain Res. 97:43–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.INSERM U26Hôpital Fernand WidalParisFrance
  2. 2.Département Biologie cellulaireInstitut Cochin INSERM U567 - CNRS UMR8104ParisFrance
  3. 3.CNRS UMR7157Hôpital Fernand WidalParis

Personalised recommendations