Skip to main content
Log in

Interactions between type A carbohydrate binding modules and cellulose studied with a quartz crystal microbalance with dissipation monitoring

Cellulose Aims and scope Submit manuscript

Abstract

The specific interaction between carbohydrate binding modules (CBMs) and substrates is of utmost importance due to it affects the biological activity of the parent enzymes and determines the chemo-mechanical properties of protein-cellulose composites. In this investigation, a quartz crystal microbalance with dissipation monitoring was employed to study, in situ and in real-time, the adsorption behaviors, conformational changes and associated thermodynamics that define the specific interactions between type A CBMs (CBM1 and CBM3) and cellulose (crystalline, CNC and nanofibrillated, CNF). CBM1 and CBM3 specifically bind to CNC and CNF substrates, with the CBM3 forming more rigid adsorbed layers at 25 °C. Despite the wide variation in adsorption enthalpy (ΔH) and entropy (ΔS), depending on the experimental conditions, a negative Gibbs free energy (ΔG) was determined from the adsorption isotherms for both CBMs. Particularly, the ΔH and ΔS associated with CBM3 adsorbing on CNF exhibited significant greater values than others due to cellulose chain disorder when swelling. The results further our understandings on the interactions between type A CBMs and cellulose substrates.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adopted from Ref. (Blake et al. 2006)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

QCM-D:

Quartz crystal microbalance with dissipation monitoring

CBM:

Carbohydrate binding module

CNC:

Nanocrystalline cellulose

CNF:

Nanofibrillated cellulose

AGE:

Affinity gel electrophoresis

ITC:

Isothermal titration calorimetry

References

  • Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 510:211–231

    CAS  PubMed  Google Scholar 

  • Abbott DW, Hrynuik S, Boraston AB (2007) Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from yersinia enterolitica. J Mol Biol 367(4):1023–1033

    CAS  PubMed  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Osterberg M (2008) Model films from native cellulose nanofibrils: preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282

    CAS  PubMed  Google Scholar 

  • Alahuhta M, Xu Q, Bomble YJ, Brunecky R, Adney WS, Ding SY, Himmel ME, Lunin VV (2010) The unique binding mode of cellulosomal cbm4 from clostridium thermocellum cellobiohydrolase A. J Mol Biol 402(2):374–387

    CAS  PubMed  Google Scholar 

  • Almeida A, Rosa AMM, Azevedo AM, Prazeres DMF (2017) A biomolecular recognition approach for the functionalization of cellulose with gold nanoparticles. J Mol Recognit 30(9):e2634

    Google Scholar 

  • Arola S, Linder MB (2016) Binding of cellulose binding modules reveal differences between cellulose substrates. Sci Rep 6(35358):35358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins P, De Paula J (2006) Physical chemistry, 8th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281(39):29321–29329

    CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueren ALV, Finn R, Juan Ausió A, Boraston AB (2004) α-Glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens. Biochemistry 43(49):15633–15642

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    CAS  PubMed  Google Scholar 

  • Carrick BH, Hao L, Smaldino PJ, Engelke DR (2016) A novel recombinant DNA system for high efficiency affinity purification of proteins in saccharomyces cerevisiae. Genes Genomes Genet 6(3):573–578

    CAS  Google Scholar 

  • Ciolacu D, Chiriac AI, Pastor FIJ, Kokol V (2014) The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis. Bioresour Technol 157:14–21

    CAS  PubMed  Google Scholar 

  • Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345(5):621–630

    CAS  PubMed  Google Scholar 

  • Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA (1996) Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA 93(22):12229–12234

    CAS  PubMed  Google Scholar 

  • Creely JJ, Segal L, Ziifle HM (1956) Determination of the degree of crystallite orientation in cotton fibers by means of the recording x-ray diffraction spectrometer. Text Res J 26(10):789–795

    CAS  Google Scholar 

  • Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2017) Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J Bioresour Bioprod 2(1):10–15

    Google Scholar 

  • Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109(37):14830–14835

    CAS  PubMed  Google Scholar 

  • Griffo A, Rooijakkers BJM, Haehl H, Jacobs K, Linder MB, Laaksonen P (2019) Binding forces of cellulose binding modules on cellulosic nanomaterials. Biomacromolecules 20(2):769–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Catchmark JM (2013) Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 14(5):1268–1277

    CAS  PubMed  Google Scholar 

  • He P, Chai L, Li L, Hao L, Shao L, Lu F (2013) In situ visualization of the change in lignocellulose biodegradability during extended anaerobic bacterial degradation. RSC Adv 3(29):11759–11773

    CAS  Google Scholar 

  • Holdgate GA, Ward WHJ (2005) Measurements of binding thermodynamics in drug discovery. Drug Discov Today 10(22):1543–1550

    CAS  PubMed  Google Scholar 

  • Hu G, Heitmann JA Jr, Rojas OJ (2009) In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance. J Phys Chem B 113(44):14761–14768

    CAS  PubMed  Google Scholar 

  • Hu F, Zhang Y, Wang P, Wu S, Jin Y, Song J (2018a) Comparison of the interactions between fungal cellulases from different origins and cellulose nanocrystal substrates with different polymorphs. Cellulose 25(2):1185–1195

    CAS  Google Scholar 

  • Hu S, Wang D, Hong J (2018b) A simple method for beta-glucosidase immobilization and its application in soybean isoflavone glycosides hydrolysis. Biotechnol Bioprocess Eng 23(1):39–48

    CAS  Google Scholar 

  • Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335

    CAS  PubMed  Google Scholar 

  • Jin E, Zhang Y, Hu F, Yang F, Wu S, Jin Y, Song J (2017) To understand the superior hydrolytic activity after polymorphic conversion from cellulose I to II from the adsorption behaviors of enzymes. Cellulose 24(3):1371–1381

    CAS  Google Scholar 

  • Josefsson P, Henriksson G, Wagberg L (2008) The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure. Biomacromolecules 9(1):249–254

    CAS  PubMed  Google Scholar 

  • Juhasz A, Luty-Blocho M, Wojnicki M, Toth GK, Csapo E (2019) General method for kinetic and thermodynamic evaluation of a receptor model peptide-drug molecule interaction studied by surface plasmon resonance. Microchem J 147:311–318

    CAS  Google Scholar 

  • Kantonen SA, Henriksen NM, Gilson MK (2018) Accounting for apparent deviations between calorimetric and van't Hoff enthalpies. Biochim Et Biophys Acta-Gen Subj 1862(3):692–704

    CAS  Google Scholar 

  • Kargl R, Mohan T, Koestler S, Spirk S, Doliska A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23(3):308–315

    CAS  Google Scholar 

  • Kim S-K, Chung D, Himmel ME, Bomble YJ, Westpheling J (2016) Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates. Biotechnol Biofuels 9:176

    PubMed  PubMed Central  Google Scholar 

  • Lam H, Kavoosi M, Haynes CA, Wang DI, Blankschtein D (2005) Affinity-enhanced protein partitioning in decyl beta-D-glucopyranoside two-phase aqueous micellar systems. Biotechnol Bioeng 89(4):381–392

    CAS  PubMed  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489

    PubMed  Google Scholar 

  • Lehtiö J, Wernérus H, Samuelson P, Teeri TT, Ståhl S (2001) Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. FEMS Microbiol Lett 195(2):197–204

    PubMed  Google Scholar 

  • Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20(3):191–213

    CAS  PubMed  Google Scholar 

  • Linder M, Teeri TT (1997) The roles and function of cellulose-binding domains. J Biotechnol 57(1–3):15–28

    CAS  Google Scholar 

  • Liu Y, Sturtevant JM (1995) Significant discrepancies between van't Hoff and calorimetric enthalpies. II. Protein Sci Publ Protein Soc 4(12):2559–2561

    CAS  Google Scholar 

  • Machado J, Araujo A, Pinto R, Gama FM (2009) Studies on the interaction of the carbohydrate binding module 3 from the Clostridium thermocellum CipA scaffolding protein with cellulose and paper fibres. Cellulose 16(5):817–824

    CAS  Google Scholar 

  • Maharjan A, Alkotaini B, Kim BS (2018) Fusion of carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity. Biotechnol Bioprocess Eng 23(1):79–85

    CAS  Google Scholar 

  • Mattinen ML, Linder M, Drakenberg T, Annila A (1998) Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. FEBS J 256(2):279–286

    CAS  Google Scholar 

  • Mattinen ML, Linder M, Teleman A, Annila A (1997) Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett 407(3):291–296

    CAS  PubMed  Google Scholar 

  • Mohan T, Kargl R, Doliska A, Ehmann HMA, Ribitsch V, Stana-Kleinschek K (2013) Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose. Carbohydr Polym 93(1):191–198

    CAS  PubMed  Google Scholar 

  • Moser C, Henriksson G, Lindström ME (2016) Specific surface area increase during cellulose nanofiber manufacturing related to energy input. BioResources 11(3):7124–7132

    CAS  Google Scholar 

  • Naghibi H, Tamura A, Sturtevant JM (1995) Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc Natl Acad Sci USA 92(12):5597–5599

    CAS  PubMed  Google Scholar 

  • Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287(24):20603–20612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira C, Romani A, Gomes D, Cunha JT, Gama FM, Domingues L (2018) Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose 25(4):2505–2514

    CAS  Google Scholar 

  • Pasari N, Adlakha N, Gupta M, Bashir Z, Rajacharya GH, Verma G, Munde M, Bhatnagar R, Yazdani SS (2017) Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass. Sci Rep 7:3700

    PubMed  PubMed Central  Google Scholar 

  • Pellegrini VOA, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P (2014) Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from hypocrea jecorina. Langmuir 30(42):12602–12609

    CAS  PubMed  Google Scholar 

  • Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins Struct Funct Bioinf 22(4):392–403

    CAS  Google Scholar 

  • Sauerbrey G (1959) The use of quartz oscillators for weighing thin layers and for microweighing. Z Angew Phys 155(2):206–222

    CAS  Google Scholar 

  • Shi X, Zheng F, Pan R, Wang J, Ding S (2014) Engineering and comparative characteristics of double carbohydrate binding modules as a strength additive for papermaking applications. Bioresources 9(2):3117–3131

    Google Scholar 

  • Song J, Yang F, Zhang Y, Hu F, Wu S, Jin Y, Guo J, Rojas OJ (2017) Interactions between fungal cellulases and films of nanofibrillar cellulose determined by a quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose 24(5):1947–1956

    CAS  Google Scholar 

  • Su FH, Tabañag IDF, Wu CY, Tsai SL (2017) Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation. Chem Eng J 308:1–7

    CAS  Google Scholar 

  • Svensson A, Larsson PT, Salazar-Alvarez G, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92(1):775–783

    CAS  PubMed  Google Scholar 

  • Tomme P, Boraston A, Kormos JM, Warren RAJ, Kilburn DG (2000) Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb Technol 27(7):453–458

    CAS  PubMed  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Schantz L, Schagerlof H, Karlsson EN, Ohlin M (2014) Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules. BMC Biotechnol 14:113

    Google Scholar 

  • Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91(3):789–798

    CAS  PubMed  Google Scholar 

  • Xu K, Ouberai MM, Welland ME (2013) A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation. Biomaterials 34(5):1461–1470

    CAS  PubMed  Google Scholar 

  • You C, Zhang YHP (2013) Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth Biol 2(2):102–110

    CAS  PubMed  Google Scholar 

  • Yu M, Qiu Y, Chen W, Zhao F, Shao J (2015) Action modes of recombinant endocellulase, EGA, and its domains on cotton fabrics. Biotechnol Lett 37(8):1615–1622

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang F, Hu F, Song J, Wu S, Jin Y (2018) Binding preference of Family 1 carbohydrate binding module on nanocrystalline cellulose and nanofibrillar cellulose films assessed by quartz crystal microbalance technique. Cellulose 25(6):3327–3337

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial supported by National Natural Science Foundation of China (Nos. 31730106, 31270613, and 31770623), Natural Science Foundation of Jiangsu Provincial Universities (No. 17KJA530005), Qing-Lan Projects, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlong Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Wang, P. et al. Interactions between type A carbohydrate binding modules and cellulose studied with a quartz crystal microbalance with dissipation monitoring. Cellulose 27, 3661–3675 (2020). https://doi.org/10.1007/s10570-020-03070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03070-4

Keywords

Navigation