We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Boosting electrical properties of flexible PEDOT/cellulose fiber composites through the enhanced interface connection with novel combined small-sized anions

  • 40 Accesses


Rapid development of flexible electronics has raised the demand for renewable conductive materials. Biomass-derived cellulose fibers (CFs) are very promising candidates due to their outstanding advantages. In this paper, flexible, lightweight and freestanding biomaterial with high electrical conductivity was prepared via in situ chemical polymerization process using 3,4-ethylenedioxythiophene (EDOT) and CFs. In order to improve the performance of PEDOT/CFs, novel combined small-sized anion doping agents, sulphosalicylic acid (SSA) and sodium benzenesulfonate (SBS), were adopted to construct a well-organized conducting layer. The obtained PEDOT layer possessed good crystallinity and high doping level and was uniformly coated onto the surface of CFs through the dopant-dependent interface. The PEDOT:SSA-SBS/CFs exhibited electrical conductivity as high as 472 S/m and the mass loading was up to 1.92 mg/cm2. Moreover, the flexible biomaterial displayed favorable electrochemical stability. Hence, the results presented here provide a new way to produce highly conducting and flexible biomaterial.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Agate S, Joyce M, Lucia L, Pal L (2018) Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—a review. Carbohydr Polym 198:249–260. https://doi.org/10.1016/j.carbpol.2018.06.045

  2. Alhashmi Alamer F (2018) The effects of temperature and frequency on the conductivity and dielectric properties of cotton fabric impregnated with doped PEDOT:PSS. Cellulose 25(10):6221–6230. https://doi.org/10.1007/s10570-018-1978-x

  3. Anderson RE, Guan J, Ricard M, Dubey G, Su J, Lopinski G, Dorris G, Bourne O, Simard B (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20(12):2400–2407. https://doi.org/10.1039/b924260k

  4. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8(4):1339–1347. https://doi.org/10.1039/C5EE00142K

  5. Berggren M, Nilsson D, Robinson ND (2007) Organic materials for printed electronics. Nat Mater 6(1):3–5. https://doi.org/10.1038/nmat1817

  6. Chang Z, Li S, Sun L, Ding C, An X, Qian X (2019) Paper-based electrode comprising zirconium phenylphosphonate modified cellulose fibers and porous polyaniline. Cellulose 26(11):6739–6754

  7. Chen Y, Qian X, An X (2011) Preparation and characterization of conductive paper via in situ polymerization of 3, 4-ethylenedioxythiophene. BioResources 6(3):3410–3423

  8. Chueh CC, Li CZ, Ding F, Li Z, Cernetic N, Li X, Jen AK (2017) Doping versatile n-type organic semiconductors via room temperature solution-processable anionic dopants. ACS Appl Mater Interfaces 9(1):1136–1144. https://doi.org/10.1021/acsami.6b14375

  9. Ding C, Qian X, Yu G, An X (2010) Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose 17:1067–1077. https://doi.org/10.1007/s10570-010-9442-6

  10. Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35:299–320. https://doi.org/10.1016/j.nanoen.2017.04.001

  11. Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K (2010) PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, Boca Raton

  12. Fei G, Wang Y, Wang H, Ma Y, Guo Q, Huang W, Yang D, Shao Y, Ni Y (2019) Fabrication of bacterial cellulose/polyaniline nanocomposite paper with excellent conductivity, strength, and flexibility. ACS Sustain Chem Eng 7(9):8215–8225. https://doi.org/10.1021/acssuschemeng.8b06306

  13. Feng JX, Ye SH, Wang AL, Lu XF, Tong YX, Li GR (2014) Flexible cellulose paper-based asymmetrical thin film supercapacitors with high-performance for electrochemical energy storage. Adv Funct Mater 24(45):7093–7101. https://doi.org/10.1002/adfm.201401876

  14. Gueye M, Carella A, Massonnet N, Yvenou E, Brenet S, Faure-Vincent J, Pouget S, Rieutord F, Okuno H, Benayad A, Demadrille R, Simonato J (2016) Structure and dopant engineering in PEDOT thin films: practical tools for a dramatic conductivity enhancement. Chem Mater 28(10):3462–3468. https://doi.org/10.1021/acs.chemmater.6b01035

  15. Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, Bloch J-F, Whitesides GM (2016) Electrically activated paper actuators. Adv Funct Mater 26(15):2446–2453. https://doi.org/10.1002/adfm.201505123

  16. Han MG, Foulger SH (2006) Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution. Small 2(10):1164–1169. https://doi.org/10.1002/smll.200600135

  17. Han S, Alvi NUH, Granlof L, Granberg H, Berggren M, Fabiano S, Crispin X (2019) A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci 6(8):1802128. https://doi.org/10.1002/advs.201802128

  18. Hinterstoisser B, Åkerholm M, Salmén L (2003) Load distribution in native cellulose. Biomacromolecules 4(5):1232–1237. https://doi.org/10.1021/bm030017k

  19. Hou M, Xu M, Li B (2018) Enhanced electrical conductivity of cellulose nanofiber/graphene composite paper with a sandwich structure. ACS Sustain Chem Eng 6(3):2983–2990. https://doi.org/10.1021/acssuschemeng.7b02683

  20. Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6435. https://doi.org/10.1039/c2ee02414d

  21. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, McGehee MD (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518. https://doi.org/10.1039/c2ee23635d

  22. Huang B, Kang G, Ni Y (2006) Preparation of conductive paper by in situ polymerization of pyrrole in a pulp fiber system. Pulp Pap Can 107(2):38–42

  23. Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610. https://doi.org/10.1039/C3CS60235D

  24. Janrungroatsakul W, Lertvachirapaiboon C, Ngeontae W, Aeungmaitrepirom W, Chailapakul O, Ekgasit S, Tuntulani T (2013) Development of coated-wire silver ion selective electrodes on paper using conductive films of silver nanoparticles. Analyst 138(22):6786–6792. https://doi.org/10.1039/c3an01385e

  25. Jason NN, Shen W, Cheng W (2015) Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl Mater Interfaces 7(30):16760–16766. https://doi.org/10.1021/acsami.5b04522

  26. Jur JS, Sweet WJ, Oldham CJ, Parsons GN (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv Funct Mater 21(11):1993–2002. https://doi.org/10.1002/adfm.201001756

  27. Kaphle V, Liu S, Al-Shadeedi A, Keum CM, Lussem B (2016) Contact resistance effects in highly doped organic electrochemical transistors. Adv Mater 28(39):8766–8770. https://doi.org/10.1002/adma.201602125

  28. Kim TY, Kim JE, Suh KS (2006) Effects of alcoholic solvents on the conductivity of tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs). Polym Int 55(1):80–86. https://doi.org/10.1002/pi.1921

  29. Kim SM et al (2018) Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat Commun 9(1):3858. https://doi.org/10.1038/s41467-018-06084-6

  30. Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J (2017) Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8(1):536. https://doi.org/10.1038/s41467-017-00550-3

  31. Koutsouras DA, Gkoupidenis P, Stolz C, Subramanian V, Malliaras GG, Martin DC (2017) Impedance spectroscopy of spin-cast and electrochemically deposited PEDOT:PSS films on microfabricated electrodes with various areas. ChemElectroChem 4(9):2321–2327. https://doi.org/10.1002/celc.201700297

  32. Li J, Qian X, Chen J, Ding C, An X (2010) Conductivity decay of cellulose–polypyrrole conductive paper composite prepared by in situ polymerization method. Carbohydr Polym 82(2):504–509. https://doi.org/10.1016/j.carbpol.2010.05.036

  33. Li X, Liu C, Zhou W, Duan X, Du Y, Xu J, Jiang Q (2019) Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly(3,4-ethylenedioxythiophene)-rich nanocrystal films. ACS Appl Mater Interfaces 11(8):8138–8147. https://doi.org/10.1021/acsami.9b00298

  34. Liu Q, Chen Z, Jing S, Zhuo H, Hu Y, Liu J, Zhong L, Peng X, Liu C (2018) A foldable composite electrode with excellent electrochemical performance using microfibrillated cellulose fibers as a framework. J Mater Chem A 6:20338–20346. https://doi.org/10.1039/c8ta06635c

  35. Migliaccio L, Altamura D, Scattarella F, Giannini C, Manini P, Gesuele F, Pezzella A (2019) Impact of eumelanin-PEDOT blending: increased PEDOT crystalline order and packing-conductivity relationship in ternary PEDOT:PSS: Eumelanin thin films. Adv Electron Mater 5(3):1800585. https://doi.org/10.1002/aelm.201800585

  36. Ni D, Chen Y, Song H, Liu C, Yang X, Cai K (2019) Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J Mater Chem A 7(3):1323–1333. https://doi.org/10.1039/c8ta08814d

  37. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769. https://doi.org/10.1002/adma.201004134

  38. Petsagkourakis I, Kim N, Tybrandt K, Zozoulenko I, Crispin X (2019) Poly(3,4-ethylenedioxythiophene): chemical synthesis, transport properties, and thermoelectric devices. Adv Electron Mater. https://doi.org/10.1002/aelm.201800918

  39. Saxena N, Pretzl B, Lamprecht X, Bießmann L, Yang D, Li N, Müller-Buschbaum P (2019) Ionic liquids as post-treatment agents for simultaneous improvement of seebeck coefficient and electrical conductivity in PEDOT:PSS films. ACS Appl Mater Interfaces 11(8):8060–8071. https://doi.org/10.1021/acsami.8b21709

  40. Shi W, Zhao T, Xi J, Wang D, Shuai Z (2015) Unravelling doping effects on PEDOT at the molecular level: from geometry to thermoelectric transport properties. J Am Chem Soc 137(40):12929–12938. https://doi.org/10.1021/jacs.5b06584

  41. Shi W, Yao Q, Qu S, Chen H, Zhang T, Chen L (2017) Micron-thick highly conductive PEDOT films synthesized via self-inhibited polymerization: roles of anions. NPG Asia Mater 9(7):e405. https://doi.org/10.1038/am.2017.107

  42. Shi W, Qu S, Chen H, Chen Y, Yao Q, Chen L (2018) One-step synthesis and enhanced thermoelectric properties of polymer–quantum dot composite films. Angew Chem 130(27):8169–8174. https://doi.org/10.1002/ange.201802681

  43. Takano T, Masunaga H, Fujiwara A, Okuzaki H, Sasaki T (2012) PEDOT Nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45(9):3859–3865. https://doi.org/10.1021/ma300120g

  44. Tsai YJ, Wang CM, Chang TS, Sutradhar S, Chang CW, Chen CY, Liao WS (2019) Multilayered Ag NP-PEDOT-paper composite device for human-machine interfacing. ACS Appl Mater Interfaces 11(10):10380–10388. https://doi.org/10.1021/acsami.8b21390

  45. Tsakova V, Ilieva G, Filjova D (2015) Role of the anionic dopant of poly(3,4-ethylenedioxythiophene) for the electroanalytical performance: electrooxidation of acetaminophen. Electrochim Acta 179:343–349. https://doi.org/10.1016/j.electacta.2015.02.062

  46. Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5(8):3819–3831. https://doi.org/10.1039/C6TA04844G

  47. Wang Z, Tammela P, Huo J, Zhang P, Strømme M, Nyholm L (2016) Solution-processed poly(3, 4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors. J Mater Chem A 4(5):1714–1722. https://doi.org/10.1039/C5TA10122K

  48. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476. https://doi.org/10.1039/c2ee23977a

  49. Zhang Y, Li L, Zhang L, Ge S, Yan M, Yu J (2017) In-situ synthesized polypyrrole-cellulose conductive networks for potential-tunable foldable power paper. Nano Energy 31:174–182. https://doi.org/10.1016/j.nanoen.2016.11.029

  50. Zhao D, Zhang Q, Chen W, Yi X, Liu S, Wang Q, Yu H (2017) Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Interfaces 9(15):13213–13222. https://doi.org/10.1021/acsami.7b01852

  51. Zhu H, Li Y, Fang Z, Xu J, Cao F, Wan J, Hu L (2014) Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4):3606–3613. https://doi.org/10.1021/nn500134m

  52. Zhuang A, Bian Y, Zhou J, Fan S, Shao H, Hu X, Zhang Y (2018) All-organic conductive biomaterial as an electroactive cell interface. ACS Appl Mater Interfaces 10(41):35547–35556. https://doi.org/10.1021/acsami.8b13820

Download references


The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 31770620) for financial support to this work.

Author information

Correspondence to Xueren Qian.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4992 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., An, X. & Qian, X. Boosting electrical properties of flexible PEDOT/cellulose fiber composites through the enhanced interface connection with novel combined small-sized anions. Cellulose (2020). https://doi.org/10.1007/s10570-019-02958-0

Download citation


  • Electrical conductivity
  • Cellulose
  • Conductive polymer
  • Dopant
  • Organic electrical
  • Biomaterial