pp 1–11 | Cite as

Facile preparation of N-doped carbon/FeOx-decorated carbon cloth for flexible symmetric solid-state supercapacitors

  • Man Zhou
  • Bo Yang
  • Yaping ZhaoEmail author
  • Zhihang Jin
  • Kai Li
  • Liping Tang
  • Zaisheng Cai
Original Research


A facile strategy for the preparation of N-doped carbon/FeOx-decorated carbon cloth (CC@NC/FeOx) as supercapacitor electrode is reported in this work. In this strategy, the oxidant Fe3+ used for oxidizing pyrrole to polypyrrole (PPy) on the cotton cloth simultaneously acts as the precursor of FeOx in CC@NC/FeOx. N-doped carbon derived from the carbonization of PPy coated on the carbonized cotton cloth is obtained during the heat treatment. The as-prepared integrated, binder-free, and flexible CC@NC/FeOx electrode shows a good specific supercapacitance (1594.0 F g−1 at the scan rate of 1 mV s−1 and 739.0 F g−1 at 10 mV s−1). The assembled CC@NC/FeOx-based solid-state symmetrical supercapacitor (CC@NC/FeOx-SSC) exhibits 1.35 F cm−2 at the scan rate of 1 mV s−1. The high surface area from the nanosheet structure and the excellent conductivity due to the existence of Fe3O4 contributes to their rate capability and the cyclability. This simple strategy offers an environmentally friendly, cost-effective and easily scaled-up route for the integrated, binder-free, and flexible supercapacitor electrode.


Energy Supercapacitor Polypyrrole Fe oxide Flexible electrode 



This work was financially supported by the National Key R&D Program of China (2017YFB0309400) (2017YFB0309100), National Natural Science Foundation of China (Grant No. 51303022), the Fundamental Research Funds for the Central Universities (Grant No. 2232015D3-17), and PhD Foundation for Innovation of Donghua University (Grant No. 17D310513). And the support provided by China Scholarship Council (CSC) during a visit of ‘Man Zhou’ (No. 201706630095) to University of British Columbia is acknowledged.

Supplementary material

10570_2019_2873_MOESM1_ESM.docx (3.4 mb)
Supplementary file1 (DOCX 3510 kb)


  1. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614CrossRefGoogle Scholar
  2. Béguin F, Friebe M, Jurewicz K, Vix-Guterl C, Dentzer J, Frackowiak E (2006) State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium. Carbon 44(12):2392–2398CrossRefGoogle Scholar
  3. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15): 4351̄–4361CrossRefGoogle Scholar
  4. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730CrossRefGoogle Scholar
  5. Boehm H, Voll M (1970) Basische Oberflächenoxide auf KohlenstoffI. Adsorption von säuren. Carbon 8(2):227–240CrossRefGoogle Scholar
  6. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D (2013) Nitrogen doping effects on the physical and chemical properties of mesoporous carbons. J Phys Chem C 117(16):8318–8328CrossRefGoogle Scholar
  7. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Supercapacitors: asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336CrossRefGoogle Scholar
  8. Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728PubMedCrossRefPubMedCentralGoogle Scholar
  9. Fujii T, De Groot F, Sawatzky G, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59(4):3195CrossRefGoogle Scholar
  10. Gao Y, Wu D, Wang T, Jia D, Xia W, Lv Y, Cao Y, Tan Y, Liu P (2016) One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor. Electrochim Acta 191:275–283CrossRefGoogle Scholar
  11. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJ, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3(9):1238–1251CrossRefGoogle Scholar
  12. Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid State Lett 5(10):A227–A230CrossRefGoogle Scholar
  13. Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983PubMedCrossRefPubMedCentralGoogle Scholar
  14. Jia C-J, Sun L-D, Luo F, Han X-D, Heyderman LJ, Yan Z-G, Yan C-H, Zheng K, Zhang Z, Takano M (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130(50):16968–16977PubMedCrossRefPubMedCentralGoogle Scholar
  15. Karthikeyan K, Kalpana D, Amaresh S, Lee YS (2012) Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Adv 2(32):12322–12328CrossRefGoogle Scholar
  16. Khattak AM, Yin H, Ghazi ZA, Liang B, Iqbal A, Khan NA, Gao Y, Li L, Tang Z (2016) Three dimensional iron oxide/graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Adv 6(64):58994–59000CrossRefGoogle Scholar
  17. Kim Y-H, Park S-J (2011) Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Curr Appl Phys 11(3):462–466CrossRefGoogle Scholar
  18. Kim J-H, Kil D-S, Yeom S-J, Roh J-S, Kwak N-J, Kim J-W (2007) Modified atomic layer deposition of RuO2 thin films for capacitor electrodes. Appl Phys Lett 91(5):052908CrossRefGoogle Scholar
  19. Kumar MP, Lathika LM, Mohanachandran AP, Rakhi RB (2018) A high-performance flexible supercapacitor anode based on polyaniline/Fe3O4 composite@Carbon cloth. ChemistrySelect 3(11):3234–3240CrossRefGoogle Scholar
  20. Lee K, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh K, Chin W, Sow CH (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9):2958–2961PubMedCrossRefPubMedCentralGoogle Scholar
  21. Lee Y-H, Chang K-H, Hu C-C (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227:300–308CrossRefGoogle Scholar
  22. Li G, Li R, Zhou W (2017) A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano Micro Lett 9(4):46CrossRefGoogle Scholar
  23. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lin Y, Wang X, Qian G, Watkins JJ (2014) Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors. Chem Mater 26(6):2128–2137CrossRefGoogle Scholar
  25. Liu D, Wang X, Wang X, Tian W, Liu J, Zhi C, He D, Bando Y, Golberg D (2013) Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. J Mater Chem A 1(6):1952–1955CrossRefGoogle Scholar
  26. Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, Xiao JQ (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed 50(30):6847–6850CrossRefGoogle Scholar
  27. Lu Z, Chang Z, Zhu W, Sun X (2011) Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem Commun 47(34):9651–9653CrossRefGoogle Scholar
  28. Ma Z, Huang X, Dou S, Wu J, Wang S (2014) One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J Phys Chem C 118(31):17231–17239CrossRefGoogle Scholar
  29. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115(31):15646–15654CrossRefGoogle Scholar
  30. Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Xu J (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohyd Polym 157:344–352CrossRefGoogle Scholar
  31. Pu J, Shen L, Zhu S, Wang J, Zhang W, Wang Z (2014) Fe3O4@C core–shell microspheres: synthesis, characterization, and application as supercapacitor electrodes. J Solid State Electrochem 18(4):1067–1076CrossRefGoogle Scholar
  32. Qiu J, Yang R, Li M, Jiang N (2005) Preparation and characterization of porous ultrafine Fe2O3 particles. Mater Res Bull 40(11):1968–1975CrossRefGoogle Scholar
  33. Qiu B, Wang Y, Sun D, Wang Q, Zhang X, Weeks BL, O'Connor R, Huang X, Wei S, Guo Z (2015) Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. J Mater Chem A 3(18):9817–9825CrossRefGoogle Scholar
  34. Qu Q, Yang S, Feng X (2011) 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv Mater 23(46):5574–5580PubMedCrossRefPubMedCentralGoogle Scholar
  35. Sagu JS, Wijayantha KU, Bohm M, Bohm S, Kumar Rout T (2016) Anodized steel electrodes for supercapacitors. ACS Appl Mater Interfaces 8(9):6277–6285PubMedCrossRefPubMedCentralGoogle Scholar
  36. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K (2013) α-Fe2O3 and Fe3O4 hollow nanospheres as high-capacity anode materials for rechargeable Li-ion batteries. Ionics 19(1):25–31CrossRefGoogle Scholar
  37. Sethuraman B, Purushothaman KK, Muralidharan G (2014) Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors. RSC Adv 4(9):4631–4637CrossRefGoogle Scholar
  38. Shahbazi-Gahrouei D, Abdolahi M (2012) The correlation between high background radiation and blood level of the trace elements (copper, zinc, iron and magnesium) in workers of Mahallat's hot springs. Adv Biomed Res 1(1):64PubMedPubMedCentralCrossRefGoogle Scholar
  39. Shen J, Liu A, Tu Y, Foo G, Yeo C, Chan-Park MB, Jiang R, Chen Y (2011) How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors? Energy Environ Sci 4(10):4220–4229CrossRefGoogle Scholar
  40. Shrestha S, Asheghi S, Timbro J, Mustain WE (2013) Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity. Appl Catal A 464:233–242CrossRefGoogle Scholar
  41. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sinan N, Unur E (2016) Fe3O4/carbon nanocomposite: investigation of capacitive and magnetic properties for supercapacitor applications. Mater Chem Phys 183:571–579CrossRefGoogle Scholar
  43. Sun G, Dong B, Cao M, Wei B, Hu C (2011) Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 23(6):1587–1593CrossRefGoogle Scholar
  44. Światkowski A, Pakuła M, Biniak S (1997) Cyclic voltammetric studies of chemically and electrochemically generated oxygen species on activated carbons. Electrochim Acta 42(9):1441–1447CrossRefGoogle Scholar
  45. Tang X, Jia R, Zhai T, Xia H (2015) Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7(49):27518–27525PubMedCrossRefPubMedCentralGoogle Scholar
  46. Tiwari S, Prakash R, Choudhary R, Phase D (2007) Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition. J Phys D Appl Phys 40(16):4943CrossRefGoogle Scholar
  47. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5(9):3793–3799PubMedCrossRefPubMedCentralGoogle Scholar
  48. Wang Q, Jiao L, Du H, Wang Y, Yuan H (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106CrossRefGoogle Scholar
  49. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729–762CrossRefGoogle Scholar
  50. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914PubMedCrossRefPubMedCentralGoogle Scholar
  51. Wei C, Xu Q, Chen Z, Rao W, Fan L, Yuan Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohyd Polym 169:50–57CrossRefGoogle Scholar
  52. Xia H, Hong C, Li B, Zhao B, Lin Z, Zheng M, Savilov SV, Aldoshin SM (2015) Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Func Mater 25(4):627–635CrossRefGoogle Scholar
  53. Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23(6):3987–3997CrossRefGoogle Scholar
  54. Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surf Sci 460:84–91CrossRefGoogle Scholar
  55. Yang S, Song X, Zhang P, Sun J, Gao L (2014) Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small 10(11):2270–2279PubMedCrossRefPubMedCentralGoogle Scholar
  56. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476CrossRefGoogle Scholar
  57. Zhai T, Wang F, Yu M, Xie S, Liang C, Li C, Xiao F, Tang R, Wu Q, Lu X (2013) 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5(15):6790–6796PubMedCrossRefPubMedCentralGoogle Scholar
  58. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Func Mater 18(24):3941–3946CrossRefGoogle Scholar
  59. Zhang L-H, Sun Q, Liu D-H, Lu A-H (2013) Magnetic hollow carbon nanospheres for removal of chromium ions. J Mater Chem A 1(33):9477–9483CrossRefGoogle Scholar
  60. Zhang C, Chen Z, Rao W, Fan L, Xia Z, Xu W, Xu J (2019a) A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose 26(2):1169–1181CrossRefGoogle Scholar
  61. Zhang C, Tian J, Rao W, Guo B, Fan L, Xu W, Xu J (2019b) Polypyrrole@ metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose 26(5):3387–3399CrossRefGoogle Scholar
  62. Zhao B, Zhuang H, Fang T, Jiao Z, Liu R, Ling X, Lu B, Jiang Y (2014) Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. J Alloy Compd 597:291–298CrossRefGoogle Scholar
  63. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88PubMedCrossRefPubMedCentralGoogle Scholar
  64. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zhou G-W, Wang J, Gao P, Yang X, He Y-S, Liao X-Z, Yang J, Ma Z-F (2012a) Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes. Ind Eng Chem Res 52(3):1197–1204CrossRefGoogle Scholar
  66. Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012b) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223PubMedCrossRefPubMedCentralGoogle Scholar
  67. Zhou M, Li X, Zhao H, Wang J, Zhao Y, Ge F, Cai Z (2018) Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance. J Mater Chem A 6(4):1621–1629CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.Fundamental Experimental Chemistry CenterDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations