Advertisement

Cellulose

pp 1–18 | Cite as

Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium

  • Yong-He Han
  • Hai-Long Mao
  • Shan-Shan WangEmail author
  • Jia-Cong Deng
  • Deng-Long ChenEmail author
  • Min LiEmail author
Original Research
  • 39 Downloads

Abstract

Ecofriendly green biosynthesis of bacterial cellulose (BC) using a low-cost carbon source from the shell extract of Sapindus mukorossi was studied by Komagataeibacter xylinus B2-1. After 7 d of incubation, strain B2-1 produced 1.31 g L−1 BC, which had similar micro-morphology and structural properties to that from Hestrin–Schramm medium based on scanning electron microscopy, X-ray diffraction and Fourier transform infrared analyses. While strain B2-1 grew well and produced BC efficiently at pHs ranging from 4.0 to 6.0, the considerable BC production was only found at temperature of 30 °C. The present investigation can provide a new low-cost carbon source for BC preparation and lead towards commercialization and industrial scale up BC.

Graphic abstract

Keywords

Green chemistry Bacterial cellulose Low-cost carbon source Sapindus mukorossi Komagataeibacter xylinus Bioresource technology 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41807110), the Research Start-up Fund of Fujian Normal University (Z0210509), the Science and Technology Program of Fujian Province (2017Y0027), the Special Fund of Quangang Petrochemical Research Institute of Fujian Normal University (2017YJY13), the Education Department Fund of Fujian Province (JAT170144), the Key Technology Research and Development Platform of Synthetic Resin Functionalization of Fujian Province (2014H2003) and the Key Research and Development Platform of Advanced Polymer Materials (2016G003). The authors thank for the help from Mrs Xiao-Xia Shi and Dr. Yu-Xuan Ye at School of the Environment of Nanjing University for SEM and FTIR analysis, respectively. The constructive comments and suggestions from Dr. Alfred D. French, the Editor-in-Chief of Cellulose, to correct the mistakes of XRD work are greatly appreciated.

Author contributions

Conceptualization, S-SW and Y-HH; Data curation, Y-HH, H-LM, S-SW and J-CD; Funding acquisition, Y-HH, S-SW, D-LC and ML; Investigation, H-LM, Y-HH, S-SW; Methodology, Y-HH, H-LM, S-SW and ML; Supervision, D-LC and ML; Writing—original draft, Y-HH, H-LM, S-SW D-LC and ML; Writing—review & editing, Y-HH, H-LM, S-SW, J-CD, D-LC and ML

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Abdelraof M, Hasanin MS, EI-Saied H (2019) Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohyd Polym 211:75–83.  https://doi.org/10.1016/j.carbpol.2019.01.095 CrossRefGoogle Scholar
  2. Adebayo-Tayo BC, Akintunde MO, Sanusi JF (2017) Effect of different fruit juice media on bacterial cellulose production by Acinetobacter sp. BAN1 and Acetobacter pasteurianus PW1. J Adv Biol Biotechnol 14:1–9.  https://doi.org/10.9734/JABB/2017/34171 CrossRefGoogle Scholar
  3. Aleshina LA, Gladysheva EK, Budaeva VV, Skiba EA, Arkharova NA, Sakovich GV (2018) X-ray diffraction study of bacterial nanocellulose produced by the Medusomyces gisevii Sa-12 culture in enzymatic hydrolysates of oat hulls. Crystallogr Rep 63:955–960.  https://doi.org/10.1134/S1063774518050024 CrossRefGoogle Scholar
  4. Amano Y, Ito F, Kanda T (2005) Novel cellulose producing system by microorganisms such as Acetobacter sp. J Biol Macromol 5:3–10CrossRefGoogle Scholar
  5. Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20:1366–1371.  https://doi.org/10.1021/bp0498490 CrossRefPubMedGoogle Scholar
  6. Barja F, Andrés-Barrao C, Pérez RO, Cabello EM, Chappuis M-L (2016) Physiology of Komagataeibacter spp. during acetic acid fermentation. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A (eds) Acetic Acid Bacteria. Springer, Berlin, pp 201–221.  https://doi.org/10.1007/978-4-431-55933-7_9 CrossRefGoogle Scholar
  7. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107.  https://doi.org/10.1111/j.1365-2672.2009.04467.x CrossRefPubMedGoogle Scholar
  8. Bentivoglio G, Röder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzing Ber 86:154–161Google Scholar
  9. Bi JC, Liu SX, Li CF, Li J, Liu LX, Deng J, Yang YC (2014) Morphology and structure characterization of bacterial celluloses produced by different strains in agitated culture. J Appl Microbiol 117:1305–1311.  https://doi.org/10.1111/jam.12619 CrossRefPubMedGoogle Scholar
  10. Çakar F, Katı A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40.  https://doi.org/10.1016/j.bej.2014.07.002 CrossRefGoogle Scholar
  11. Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohyd Polym 84:96–102.  https://doi.org/10.1016/j.carbpol.2010.10.072 CrossRefGoogle Scholar
  12. Chen H-H, Chen L-C, Huang H-C, Lin S-B (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583.  https://doi.org/10.1007/s10570-011-9594-z CrossRefGoogle Scholar
  13. Chen L, Hong F, Yang X-x, Han S-f (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468.  https://doi.org/10.1016/j.biortech.2012.10.029 CrossRefPubMedGoogle Scholar
  14. Çoban EP, Biyik H (2011) Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin–Scharmm) medium and beet molasses medium. Afr J Microbiol Res 5:1037–1045.  https://doi.org/10.5897/AJMR11.008 CrossRefGoogle Scholar
  15. de Marco Lima G, Sierakowski M-R, Faria-Tischer PCS, Tischer CA (2011) Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride. Mat Sci Eng C Mater 31:190–197.  https://doi.org/10.1016/j.msec.2010.08.017 CrossRefGoogle Scholar
  16. Dórame-Miranda RF, Gámez-Meza N, Medina-Juárez LÁ, Ezquerra-Brauer JM, Ovando-Martínez M, Lizardi-Mendoza J (2019) Bacterial cellulose production by Gluconacetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohyd Polym 207:91–99.  https://doi.org/10.1016/j.carbpol.2018.11.067 CrossRefGoogle Scholar
  17. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  18. Gallegos AMA, Carrera SH, Parra R, Keshavarz T, Iqbal HMN (2016) Bacterial cellulose: a sustainable source to develop value-added products—a review. BioResources 11:5641–5655.  https://doi.org/10.15376/biores.11.2.gallegos CrossRefGoogle Scholar
  19. Gayathri G, Srinikethan G (2019) Bacterial cellulose production by K. saccharivorans BC1 strain using crude distillery effluent as cheap and cost effective nutrient medium. Int J Biol Macromol 138:950–957.  https://doi.org/10.1016/j.ijbiomac.2019.07.159 CrossRefPubMedGoogle Scholar
  20. Gomes FP et al (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg 55:205–211.  https://doi.org/10.1016/j.biombioe.2013.02.004 CrossRefGoogle Scholar
  21. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352.  https://doi.org/10.1042/bj0580345 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hong F, Han S (2011) Biorefinery of bacterial cellulose from rice straw: enhanced enzymatic saccharification by ionic liquid pretreatment. Eng Sci 9:23–26Google Scholar
  23. Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohyd Polym 72:545–549.  https://doi.org/10.1016/j.carbpol.2007.09.015 CrossRefGoogle Scholar
  24. Hong F, Guo X, Zhang S, Han S-F, Yang G, Jönssond LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508.  https://doi.org/10.1016/j.biortech.2011.11.028 CrossRefPubMedGoogle Scholar
  25. Hornung M, Ludwig M, Gerrard AM, Schmauder H-P (2006) Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (part 1). Eng Life Sci 6:537–545.  https://doi.org/10.1002/elsc.200620162 CrossRefGoogle Scholar
  26. Huang C et al (2015) Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60:491–496.  https://doi.org/10.1111/lam.12396 CrossRefPubMedGoogle Scholar
  27. Huang C et al (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 136:198–202.  https://doi.org/10.1016/j.carbpol.2015.09.043 CrossRefGoogle Scholar
  28. Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5:31–33.  https://doi.org/10.4172/1948-5948.1000095 CrossRefGoogle Scholar
  29. Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911.  https://doi.org/10.1007/s10570-019-02307-1 CrossRefGoogle Scholar
  30. Hutchens S, Leon R, O’ Neill H, Evans B (2007) Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol 44:175–180.  https://doi.org/10.1111/j.1472-765X.2006.02055.x CrossRefPubMedGoogle Scholar
  31. Jagannath A, Kalaiselvan A, Manjunatha SS, Raju PS, Bawa AS (2008) The effect of pH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-coco) by Acetobacter xylinum. World J Microbiol Biotechnol 24:2593–2599.  https://doi.org/10.1007/s11274-008-9781-8 CrossRefGoogle Scholar
  32. Jahan F, Kumar V, Saxena RK (2018) Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol 250:922–926.  https://doi.org/10.1016/j.biortech.2017.09.094 CrossRefPubMedGoogle Scholar
  33. Jozala AF, Pértile RAN, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A Jr (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99:1181–1190.  https://doi.org/10.1007/s00253-014-6232-3 CrossRefPubMedGoogle Scholar
  34. Kamra DN, Agarwal N, Chaudhary LC (2006) Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int Congr Ser 1293:156–163.  https://doi.org/10.1016/j.ics.2006.02.002 CrossRefGoogle Scholar
  35. Keshk SMAS (2014) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohyd Polym 99:98–100.  https://doi.org/10.1016/j.carbpol.2013.08.060 CrossRefGoogle Scholar
  36. Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296.  https://doi.org/10.1007/s00253-005-0265-6 CrossRefPubMedGoogle Scholar
  37. Khattak WA, Khan T, Ul-Islam M, Wahid F, Park JK (2015) Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J Polym Environ 23:45–53.  https://doi.org/10.1007/s10924-014-0663-x CrossRefGoogle Scholar
  38. Khosravi-Darani K, Koller M, Akramzadeh N, Mortazavian AM (2016) Bacterial nanocellulose: biosynthesis and medical application. Biointerface Res Appl Chem 6:1511–1516Google Scholar
  39. Kim S-J, Dwiatmoko AA, Choi JW, Suh Y-W, Suh DJ, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279.  https://doi.org/10.1016/j.biortech.2010.06.047 CrossRefPubMedGoogle Scholar
  40. Kim SS, Lee SY, Park KJ, Park SM, An HJ, Hyun JM, Choi YH (2017) Gluconacetobacter sp. gel_SEA623-2, bacterial cellulose producing bacterium isolated from citrus fruit juice. Saudi J Biol Sci 24:314–319.  https://doi.org/10.1016/j.sjbs.2015.09.031 CrossRefPubMedGoogle Scholar
  41. Kiziltas EE, Kiziltas A, Gardner DJ (2015) Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohyd Polym 124:131–138.  https://doi.org/10.1016/j.carbpol.2015.01.036 CrossRefGoogle Scholar
  42. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  43. Kose R, Sunagawa N, Yoshida M, Tajima K (2013) One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 20:2971–2979.  https://doi.org/10.1007/s10570-013-0050-0 CrossRefGoogle Scholar
  44. Krasteva PV et al (2018) Insights into the structure and assembly of a bacterial cellulose secretion system. Nat Commun 8:2065.  https://doi.org/10.1038/s41467-017-01523-2 CrossRefGoogle Scholar
  45. Kumar V, Sharma DK, Bansal V, Mehta D, Sangwan RS, Yadav SK (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433.  https://doi.org/10.1016/j.biortech.2018.12.042 CrossRefPubMedGoogle Scholar
  46. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohyd Polym 76:333–335.  https://doi.org/10.1016/j.carbpol.2008.11.009 CrossRefGoogle Scholar
  47. Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7:75–80.  https://doi.org/10.12816/0008218 CrossRefGoogle Scholar
  48. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohyd Polym 120:115–119.  https://doi.org/10.1016/j.carbpol.2014.11.061 CrossRefGoogle Scholar
  49. Lima HLS et al (2017) Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice—an agroindustry waste. Braz J Chem Eng 34:671–680.  https://doi.org/10.1590/0104-6632.20170343s20150514 CrossRefGoogle Scholar
  50. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119.  https://doi.org/10.1016/j.biortech.2013.10.052 CrossRefPubMedGoogle Scholar
  51. Ling S et al (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56.  https://doi.org/10.1016/j.progpolymsci.2018.06.004 CrossRefGoogle Scholar
  52. Lovato L, Pelegrini BL, Rodrigues J, Oliveira AJBd, Ferreira ICP (2014) Seed oil of Sapindus saponaria L. (Sapindaceae) as potential C16 to C22 fatty acids resource. Biomass Bioenerg 60:247–251.  https://doi.org/10.1016/j.biombioe.2013.11.016 CrossRefGoogle Scholar
  53. Luo M-T et al (2017) Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus. Prep Biochem Biotechnol 47:1025–1031.  https://doi.org/10.1080/10826068.2017.1373290 CrossRefPubMedGoogle Scholar
  54. Meza-Contreras JC, Manriquez-Gonzalez R, Gutiérrez-Ortega JA, Gonzalez-Garcia Y (2018) XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: a comparative strategy of analyses. Carbohyd Res 461:51–59.  https://doi.org/10.1016/j.carres.2018.03.005 CrossRefGoogle Scholar
  55. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohyd Polym 117:518–523.  https://doi.org/10.1016/j.carbpol.2014.10.008 CrossRefGoogle Scholar
  56. Molina-Ramírez C et al (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10:639.  https://doi.org/10.3390/ma10060639 CrossRefPubMedCentralGoogle Scholar
  57. Moosavi-Nasab M, Yousefi AR (2010) Investigation of physicochemical properties of the bacterial cellulose produced by Gluconacetobacter xylinus from date syrup. Int J Biol Biomol Agric Food Biotecnol Eng 4:613–618Google Scholar
  58. Moosavi-Nasab M, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9:94–101Google Scholar
  59. Nielsen SS (2010) Total carbohydrate by phenol-sulfuric acid method. In: Nielsen SS (ed) Food analysis laboratory manual. The food science text series, 3rd edn. Springer, Cham, pp 137–141.  https://doi.org/10.1007/978-3-319-44127-6_14 CrossRefGoogle Scholar
  60. Noro N, Sugano Y, Shoda M (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64:199–205.  https://doi.org/10.1007/s00253-003-1457-6 CrossRefPubMedGoogle Scholar
  61. Pacheco G et al (2017) Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind Crop Prod 107:13–19.  https://doi.org/10.1016/j.indcrop.2017.05.026 CrossRefGoogle Scholar
  62. Penttilä PA, Sugiyama J, Imai T (2016) Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases. Carbohyd Polym 136:656–666.  https://doi.org/10.1016/j.carbpol.2015.09.082 CrossRefGoogle Scholar
  63. Rani MU, Appaiah KAA (2013) Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50:755–762.  https://doi.org/10.1007/s13197-011-0401-5 CrossRefPubMedGoogle Scholar
  64. Rani MU, Rastogi NK, Appaiah KAA (2011a) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract–an agro-industry waste. J Microbiol Biotechnol 21:739–745.  https://doi.org/10.4014/jmb.1012.12026 CrossRefPubMedGoogle Scholar
  65. Rani MU, Udayasankar K, Appaiah KAA (2011b) Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci 120:2835–2841.  https://doi.org/10.1002/app.33307 CrossRefGoogle Scholar
  66. Reiniati I, Hrymak AN, Margaritis A (2017) Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Cri Rev Biotechnol 37:510–524.  https://doi.org/10.1080/07388551.2016.1189871 CrossRefGoogle Scholar
  67. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273.  https://doi.org/10.1039/b600586c CrossRefGoogle Scholar
  68. Salari M, Khiabani MS, Mokarram RR, Ghanbarzadeh B, Kafil HS (2019) Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int J Biol Macromol 122:280–288.  https://doi.org/10.1016/j.ijbiomac.2018.10.136 CrossRefPubMedGoogle Scholar
  69. Saowapark T, Chaichana E, Jaturapipree A (2017) Properties of natural rubber latex filled with bacterial cellulose produced from pineapple peels. J Met Mater Miner 27:12–16.  https://doi.org/10.14456/jmmm.2017.xx CrossRefGoogle Scholar
  70. Saxena IM, Brown Jr RM (2013) Biosynthesis of Bacterial Cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose—a sophisticated multifunctional material, 1st edn. CRC Press, Boca Raton, pp 1–18.  https://doi.org/10.1201/b12936-5 CrossRefGoogle Scholar
  71. Sharma C, Bhardwaj NK (2019) Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms. Int J Biol Macromol 132:166–177.  https://doi.org/10.1016/j.ijbiomac.2019.03.202 CrossRefPubMedGoogle Scholar
  72. Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520.  https://doi.org/10.1002/bit.23014 CrossRefPubMedGoogle Scholar
  73. Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146.  https://doi.org/10.1007/s11814-009-0022-0 CrossRefGoogle Scholar
  74. Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2014) Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo Int J Sci Tech 8:1–14.  https://doi.org/10.14456/mijst.2014.1 CrossRefGoogle Scholar
  75. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975.  https://doi.org/10.1021/ja025790m CrossRefPubMedGoogle Scholar
  76. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzing Ber 89:118–131Google Scholar
  77. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261.  https://doi.org/10.1023/A:1009211927183 CrossRefGoogle Scholar
  78. Tsouko E et al (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849.  https://doi.org/10.3390/ijms160714832 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80.  https://doi.org/10.1016/j.jclepro.2015.07.054 CrossRefGoogle Scholar
  80. Uraki Y, Morito M, Kishimoto T, Sano Y (2002) Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56:341–347.  https://doi.org/10.1515/HF.2002.054 CrossRefGoogle Scholar
  81. Valera MJ, Torija MJ, Mas A, Mateo E (2015) Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99:1349–1361.  https://doi.org/10.1007/s00253-014-6198-1 CrossRefPubMedGoogle Scholar
  82. Varaee M, Honarvar M, Eikani MH, Omidkhah MR, Moraki N (2019) Supercritical fluid extraction of free amino acids from sugar beet and sugar cane molasses. J Supercrit Fluid 144:48–55.  https://doi.org/10.1016/j.supflu.2018.10.007 CrossRefGoogle Scholar
  83. Velásquez-Riaño M, Bojacá V (2017) Production of bacterial cellulose from alternative low-cost substrates. Cellulose 24:2677–2698.  https://doi.org/10.1007/s10570-017-1309-7 CrossRefGoogle Scholar
  84. Wang S-S, Han Y-H, Ye Y-X, Shi X-X, Xiang P, Chen D-L, Li M (2017) Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv 7:45145–45155.  https://doi.org/10.1039/C7RA08391B CrossRefGoogle Scholar
  85. Wang S-S et al (2018) Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers 10:963.  https://doi.org/10.3390/polym10090963 CrossRefPubMedCentralGoogle Scholar
  86. Wu H et al (2014) Analysis of the bioactive components of Sapindus saponins. Ind Crop Prod 61:422–429.  https://doi.org/10.1016/j.indcrop.2014.07.026 CrossRefGoogle Scholar
  87. Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose 3:229–242.  https://doi.org/10.1007/bf02228804 CrossRefGoogle Scholar
  88. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145.  https://doi.org/10.1007/BF01139032 CrossRefGoogle Scholar
  89. Yang X-Y, Huang C, Guo H-J, Xiong L, Li Y-Y, Zhang H-R, Chen X-D (2013) Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus. J Appl Microbiol 115:995–1002.  https://doi.org/10.1111/jam.12255 CrossRefPubMedGoogle Scholar
  90. Yang X-Y et al (2016) Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotechnol 46:39–43.  https://doi.org/10.1080/10826068.2014.958163 CrossRefPubMedGoogle Scholar
  91. Yanti NA, Ahmad SW, Ambardini S, Muhiddin NH, Sulaiman LOI (2017) Screening of acetic acid bacteria from pineapple waste for bacterial cellulose production using sago liquid waste. Biosaintifika. J Biol Biol Educ 9:387–393.  https://doi.org/10.15294/biosaintifika.v9i3.10241 CrossRefGoogle Scholar
  92. Ye J et al (2019) Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol 274:518–524.  https://doi.org/10.1016/j.biortech.2018.12.028 CrossRefPubMedGoogle Scholar
  93. Yin S-W, Chen J-C, Sun S-D, Tang C-H, Yang X-Q, Wen Q-B, Qi J-R (2011) Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food Chem 128:420–426.  https://doi.org/10.1016/j.foodchem.2011.03.046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Quangang Petrochemical Research InstituteFujian Normal UniversityQuanzhouChina
  2. 2.College of Environmental Science and EngineeringFujian Normal UniversityFuzhouChina
  3. 3.Fujian Key Laboratory of Pollution Control and Resource ReuseFuzhouChina
  4. 4.Fujian Provincial Key Lab of Coastal Basin EnvironmentFuqing Branch of Fujian Normal UniversityFuqingChina
  5. 5.College of Life ScienceFujian Normal UniversityFuzhouChina
  6. 6.The Innovative Center for Eco-Friendly Polymeric Materials of Fujian ProvinceQuanzhouChina

Personalised recommendations