Advertisement

Cellulose

pp 1–18 | Cite as

Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method

  • Satita Thiangtham
  • James Runt
  • Nagahiro Saito
  • Hathaikarn ManuspiyaEmail author
Original Research
  • 37 Downloads

Abstract

The design of biocomposite membranes based on microcrystalline cellulose (MCC) extracted from sugarcane bagasse added into matrices of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) was fabricated by the phase inversion method. The pore formation of biocomposite membranes was prepared by the phase inversion method, and the obtained biocomposite membranes showed a tunable microstructure formed in the membranes that was investigated by field-emission scanning electron microscope. Due to the high porosity and hydrophilic properties of MCC, the biocomposite membranes demonstrated excellent electrolyte wettability, large electrolyte uptake (up to 138%), and smaller interfacial resistance leading to enhancement of the ionic conductivity. Furthermore, the effects of MCC on the thermal properties of biocomposite membranes were evaluated by differential scanning calorimetry and the thermal shrinkage test. The addition of 5 wt% MCC showed the outstanding thermal stability of the biocomposite membranes. After thermal treatment at 135 °C for 1 h, this biocomposite membrane exhibited shrinkage of only 32% from the original shape while the PLA/PBS membrane showed shrinkage of 81%, which verifies that the introduction of MCC improves the thermal stabilities of biocomposite membranes. Promisingly, the biocomposite membranes represent candidate alternatives for future battery applications.

Graphic abstract

Keywords

Battery Biocomposite membrane Microcrystalline cellulose (MCC) Phase inversion Sugarcane bagasse 

Notes

Acknowledgment

The authors are grateful for the financial support of this research from the National Research Council of Thailand (NRCT), 2019. 

References

  1. Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475CrossRefGoogle Scholar
  2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bhatia A, Gupta R, Bhattacharya S, Choi H (2007) Compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) blends for packaging application. Korea Aust Rheol J 19:125–131Google Scholar
  6. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A Appl Sci Manuf 40:404–412CrossRefGoogle Scholar
  7. César NR, Pereira-da-Silva MA, Botaro VR, de Menezes AJ (2015) Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22:449–460CrossRefGoogle Scholar
  8. Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135.  https://doi.org/10.1016/j.jpowsour.2014.10.026 CrossRefGoogle Scholar
  9. Costa C, Kundu M, Cardoso V, Machado A, Silva M, Lanceros-Méndez S (2018) Silica/poly (vinylidene fluoride) porous composite membranes for lithium-ion battery separators. J Membr Sci 564:842–851CrossRefGoogle Scholar
  10. De Azeredo HM (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  11. de Souza AP, Leite DC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. BioEnergy Res 6:564–579CrossRefGoogle Scholar
  12. Fang J, Sun R, Tomkinson J (2000) Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose 7:87–107CrossRefGoogle Scholar
  13. Fang L-F, Shi J-L, Zhu B-K, Zhu L-P (2013) Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries. J Membr Sci 448:143–150CrossRefGoogle Scholar
  14. Ferreira F, Mariano M, Rabelo S, Gouveia R, Lona L (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro-to a nano-scale view. Appl Surf Sci 436:1113–1122CrossRefGoogle Scholar
  15. Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod 67:439–447CrossRefGoogle Scholar
  16. Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M (2016) Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des 106:295–304.  https://doi.org/10.1016/j.matdes.2016.05.103 CrossRefGoogle Scholar
  17. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  18. Fu Q et al (2018) Mechanically reinforced PVdF/PMMA/SiO2 composite membrane and its electrochemical properties as a separator in lithium-ion batteries. Energy Technol 6:144–152CrossRefGoogle Scholar
  19. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  20. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54.  https://doi.org/10.2147/NSA.S64386 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Howell JA, Sanchez V, Field RW (2012) Membranes in bioprocessing: theory and applications. Springer, BerlinGoogle Scholar
  22. Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRefGoogle Scholar
  23. Jin F-L, Pang Q-Q, Zhang T-Y, Park S-J (2015) Synergistic reinforcing of poly(lactic acid)-based systems by polybutylene succinate and nano-calcium carbonate. J Ind Eng Chem 32:77–84CrossRefGoogle Scholar
  24. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol 103:931–940PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A Appl Sci Manuf 42:1509–1514CrossRefGoogle Scholar
  26. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8Google Scholar
  27. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRefGoogle Scholar
  29. Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583CrossRefGoogle Scholar
  30. Ling Z et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRefGoogle Scholar
  31. Liu X, Dever M, Fair N, Benson R (1997) Thermal and mechanical properties of poly(lactic acid) and poly(ethylene/butylene succinate) blends. J Environ Polym Degrad 5:225–235Google Scholar
  32. Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@ PI/m-PE/SiO2@ PI nanofiber composite membrane. J Power Sources 396:265–275CrossRefGoogle Scholar
  33. Luo X, Liao Y, Zhu Y, Li M, Chen F, Huang Q, Li W (2017) Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries. J Power Sources 348:229–238CrossRefGoogle Scholar
  34. Luzi F et al (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRefGoogle Scholar
  35. Ma X, Kolla P, Yang R, Wang Z, Zhao Y, Smirnova AL, Fong H (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423CrossRefGoogle Scholar
  36. Maheswari CU, Reddy KO, Muzenda E, Guduri B, Rajulu AV (2012) Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass Bioenergy 46:555–563CrossRefGoogle Scholar
  37. Manshor MR, Anuar H, Aimi N, Fitrie MI, Nazri WB, Sapuan SM, El-Shekeil YA, Wahit MU (2014) Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater Des 59:279–286CrossRefGoogle Scholar
  38. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025CrossRefGoogle Scholar
  39. Meng X et al (2018) Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139:188–197CrossRefGoogle Scholar
  40. Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812CrossRefGoogle Scholar
  41. Naduparambath S, Jinitha T, Shaniba V, Sreejith M, Balan AK, Purushothaman E (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20PubMedCrossRefPubMedCentralGoogle Scholar
  42. Nunes-Pereira J, Costa C, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398CrossRefGoogle Scholar
  43. Panyasiri P, Yingkamhaeng N, Lam NT, Sukyai P (2018) Extraction of cellulose nanofibrils from amylase-treated cassava bagasse using high-pressure homogenization. Cellulose 25:1757–1768CrossRefGoogle Scholar
  44. Pappas C, Tarantilis P, Daliani I, Mavromoustakos T, Polissiou M (2002) Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm.). Ultrason Sonochem 9:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  45. Reddy KO, Guduri B, Rajulu AV (2009) Structural characterization and tensile properties of borassus fruit fibers. J Appl Polym Sci 114:603–611CrossRefGoogle Scholar
  46. Rico M, Rodríguez-Llamazares S, Barral L, Bouza R, Montero B (2016) Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr Polym 149:83–93PubMedCrossRefPubMedCentralGoogle Scholar
  47. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly(lactic acid). J Clean Prod 198:987–995CrossRefGoogle Scholar
  48. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2019) Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends. Cellulose.  https://doi.org/10.1007/s10570-019-02262-x CrossRefGoogle Scholar
  49. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8CrossRefGoogle Scholar
  50. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  51. Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 47:3557–3564CrossRefGoogle Scholar
  52. Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Poly Degrad Stab 84:331–339CrossRefGoogle Scholar
  53. Sun X, Xu F, Sun R, Fowler P, Baird M (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106PubMedCrossRefPubMedCentralGoogle Scholar
  54. Supthanyakul R, Kaabbuathong N, Chirachanchai S (2017) Poly(l-lactide-b-butylene succinate-bl-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym Degrad Stab 142:160–168CrossRefGoogle Scholar
  55. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192.  https://doi.org/10.1016/j.compscitech.2009.02.022 CrossRefGoogle Scholar
  56. Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778CrossRefGoogle Scholar
  57. Thiangtham S, Runt J, Manuspiya H (2019) Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydr Polym 208:314–322PubMedCrossRefPubMedCentralGoogle Scholar
  58. Van de Witte P, Dijkstra PJ, Van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31CrossRefGoogle Scholar
  59. Van Vught F, Kools WFC, te Hoogstraten B (1998) Membrane formation by phase inversion in multicomponent polymer system. Ph.D. thesis, University of TwenteGoogle Scholar
  60. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344PubMedCentralCrossRefGoogle Scholar
  61. Wang H, Gao H (2016) A sandwich-like composite nonwoven separator for Li-ion batteries. Electrochim Acta 215:525–534CrossRefGoogle Scholar
  62. Wang D, Xu W, Sun G, Chiou B-S (2011) Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes. ACS Appl Mater Interfaces 3:2838–2844PubMedCrossRefPubMedCentralGoogle Scholar
  63. Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254.  https://doi.org/10.1016/j.memsci.2017.05.023 CrossRefGoogle Scholar
  64. Yanilmaz M, Lu Y, Zhu J, Zhang X (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212CrossRefGoogle Scholar
  65. Yokohara T, Yamaguchi M (2008) Structure and properties for biomass-based polyester blends of PLA and PBS. Eur Polym J 44:677–685CrossRefGoogle Scholar
  66. Young T-H, Chen L-W (1995) Pore formation mechanism of membranes from phase inversion process. Desalination 103:233–247CrossRefGoogle Scholar
  67. Zaccaria M et al (2015) Effect of silica and tin oxide nanoparticles on properties of nanofibrous electrospun separators. J Electrochem Soc 162:A915–A920CrossRefGoogle Scholar
  68. Zhang X, Zhang Y (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382PubMedCrossRefPubMedCentralGoogle Scholar
  69. Zhang L, Sun X, Hu Z, Yuan C, Chen C (2012) Rice paper as a separator membrane in lithium-ion batteries. J Power Sources 204:149–154CrossRefGoogle Scholar
  70. Zhang J et al (2013) A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process. Solid State Ionics 245:49–55CrossRefGoogle Scholar
  71. Zhang X, Shi J, Ye H, Dong Y, Zhou Q (2018) Combined effect of cellulose nanocrystals and poly(butylene succinate) on poly(lactic acid) crystallization: the role of interfacial affinity. Carbohydr Polym 179:79–85PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J Nanomater 2010:4Google Scholar
  73. Zheng W, Zhu Y, Na B, Lv R, Liu H, Li W, Zhou H (2017) Hybrid silica membranes with a polymer nanofiber skeleton and their application as lithium-ion battery separators. Compos Sci Technol 144:178–184CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Satita Thiangtham
    • 1
  • James Runt
    • 2
  • Nagahiro Saito
    • 3
  • Hathaikarn Manuspiya
    • 1
    • 4
    Email author
  1. 1.The Petroleum and Petrochemical CollegeChulalongkorn UniversityBangkokThailand
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Chemical Systems Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  4. 4.Center of Excellence on Petrochemical and Materials TechnologyChulalongkorn UniversityBangkokThailand

Personalised recommendations