pp 1–16 | Cite as

N-Hydroxysuccinimide-activated esters as a functionalization agent for amino cellulose: synthesis and solid-state NMR characterization

  • Pedro B. Groszewicz
  • Pedro Mendes
  • Bharti Kumari
  • Jonas Lins
  • Markus Biesalski
  • Torsten GutmannEmail author
  • Gerd BuntkowskyEmail author
Original Research


We propose a mild and versatile synthesis protocol based on N-hydroxysuccinimide-activated esters for the introduction of new functionalities to cellulose, using as starting point established protocols for the tosylation of cellulose and its subsequent reaction with a diamine linker. As a proof of concept, we describe the functionalization of microcrystalline cellulose with a N-hydroxysuccinimide-activated ester of benzophenone, a photoreactive functional group. Irradiation of the final product with UV light yields a self-standing polymer film and is expected to result in cross-linking among cellulose chains. To monitor structural changes at the molecular level, each functionalization step is characterized by a multinuclear solid-state NMR approach. DNP-enhanced 15N CP MAS NMR experiments reveal the formation of the amide bond to the photoreactive linker and deliver further information about the binding situation of nitrogen-containing groups in these materials. The flexible synthesis protocol described here can be easily extended to a broad range of other functionalities of interest, both for the cellulose and macromolecular research.


Solid-state NMR Dynamic nuclear polarization Functionalization 



This work has been supported by the Project iNAPO by the Hessen State Ministry of Higher Education, Research and the Arts and intramural funding in the FIPRE consortium. GB and TG thank the DFG under contract Bu 911/26-1 for financial support.

Supplementary material

10570_2019_2864_MOESM1_ESM.pdf (841 kb)
Supplementary file1 (PDF 841 kb)


  1. Agarwal S, Hossain AM, Choi Y-S, Cheong M, Jang HG, Lee JS (2013) Imidazolium chloride-LiCl melts as efficient solvents for cellulose. Bull Korean Chem Soc 34:3771–3776CrossRefGoogle Scholar
  2. Alves LCH (2015) Cellulose solutions: dissolution, regeneration, solution structure and molecular interactions. PhD thesis, Faculdade de Ciências e Tecnologia da Universidade de CoimbraGoogle Scholar
  3. Anderson GW, Zimmerman JE, Callahan FM (1964) The use of esters of N-hydroxysuccinimide in peptide synthesis. J Am Chem Soc 86:1839–1842CrossRefGoogle Scholar
  4. André Pinkert KNM, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728PubMedCrossRefPubMedCentralGoogle Scholar
  5. Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–346CrossRefGoogle Scholar
  7. Böhm A, Gattermayer M, Trieb C, Schabel S, Miletzky F, Biesalski M, Fiedler D (2012) Photo-attaching functional polymers to cellulose fibers for the design of chemically modified paper. Cellulose 20:467–483CrossRefGoogle Scholar
  8. Cerqueira DA, Filho GR, Carvalho RdA, Valente AJM (2010) Caracterização de acetato de celulose obtido a partir do bagaço de cana-de-açúcar por 1H-RMN. Polímeros 20:85–91CrossRefGoogle Scholar
  9. Charles L, McCormick TRD, Kent Newman J (1990) Competitive formation of cellulose p-toluenesulfonate chlorodeoxycellulose p-toluenesulfonyl acetamide-lithium. Carbohydr Res 208:183–191CrossRefGoogle Scholar
  10. Christensen SK (2013) Photo-reaction of copolymers with pendent benzophenone. PhD thesis, University of MassachusettsGoogle Scholar
  11. Dawsey TR, McCormick CL (2006) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Part C 30:405–440CrossRefGoogle Scholar
  12. Dos A, Schimming V, Tosoni S, Limbach H-H (2008) Acid–base interactions and secondary structures of poly-l-lysine probed by 15N and 13C solid state NMR and ab initio model calculations. J Phys Chem B 112:15604–15615PubMedCrossRefGoogle Scholar
  13. Dos A, Schimming V, Huot MC, Limbach H-H (2009) Acid-induced amino side–chain interactions and secondary structure of solid poly-l-lysine probed by 15N and 13C solid state NMR and ab initio model calculations. J Am Chem Soc 131:7641–7653PubMedCrossRefGoogle Scholar
  14. Earl WL, Vander Hart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574CrossRefGoogle Scholar
  15. Eggert H, Djerassi C (1973) Carbon-13 nuclear magnetic resonance spectra of acyclic aliphatic amines. J Am Chem Soc 95:3710–3718CrossRefGoogle Scholar
  16. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gürdağ G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, pp 15–57CrossRefGoogle Scholar
  19. Gutmann T et al (2015) Natural abundance N-15 NMR by dynamic nuclear polarization: fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst. Chem Eur J 21:3798–3805PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gutmann T, Kumari B, Zhao L, Breitzke H, Schoettner S, Ruettiger C, Gallei M (2017) Dynamic nuclear polarization signal amplification as a sensitive probe for specific functionalization of complex paper substrates. J Phys Chem C 121:3896–3903CrossRefGoogle Scholar
  21. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  22. Heinze T, Koschella A, Magdaleno-Maiza L, Ulrich AS (2001) Nucleophilic displacement reactions on tosyl cellulose by chiral amines. Polym Bull 46:7–13CrossRefGoogle Scholar
  23. Heinze T, Pfeifer A, Koschella A, Schaller J, Meister F (2016) Solvent-free synthesis of 6-deoxy-6-(ω-aminoalkyl)amino cellulose. J Appl Polym Sci. CrossRefGoogle Scholar
  24. Hermanson GT (2013) Chapter 1—Introduction to bioconjugation. In: Hermanson GT (ed) Bioconjugate techniques, 3rd edn. Academic Press, Boston, pp 1–125Google Scholar
  25. Horii F, Hirai A, Kitamaru R (1982) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Polym Bull 8:163–170CrossRefGoogle Scholar
  26. Horii F, Hirai A, Kitamaru R (1987) CP/MAS carbon-13 NMR spectra of the crystalline components of native celluloses. Macromolecules 20:2117–2120CrossRefGoogle Scholar
  27. Ihmels H, Scheffer JR (1999) The norrish type II reaction in the crystalline state: toward a better understanding of the geometric requirements for v-hydrogen atom abstraction. Tetrahedron 55:885–907CrossRefGoogle Scholar
  28. Janko M et al (2015) Cross-linking cellulosic fibers with photoreactive polymers: visualization with confocal raman and fluorescence microscopy. Biomacromolecules 16:2179–2187PubMedCrossRefGoogle Scholar
  29. Kerstin Rahn MD, Klemm D, Berghmans H, Heinze T (1995) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamidel LiCl solvent system. Die Angew Makromol Chem 238:143–163CrossRefGoogle Scholar
  30. Koerner M, Prucker O, Ruehe J (2016) Kinetics of the generation of surface-attached polymer networks through C, H-insertion reactions. Macromolecules 49:2438–2447CrossRefGoogle Scholar
  31. Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Mag Res 15:31–40CrossRefGoogle Scholar
  32. Lelli M et al (2011) Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization. J Am Chem Soc 133:2104–2107PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lin AA, Sastri VR, Tesoro G, Reiser A, Eachus R (1987) On the cross-linking mechanism of benzophenone-containing polyimides. Macromolecules 21:1165–1169CrossRefGoogle Scholar
  34. Liu J et al (2015) Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: synthesis and solid-state NMR characterization. Chem Eur J 21:12414–12420CrossRefGoogle Scholar
  35. Liu P et al (2018) Efficient, self-terminating isolation of cellulose nanocrystals through periodate oxidation in pickering emulsions. Chemsuschem 11:3581–3585PubMedCrossRefGoogle Scholar
  36. Meng X, Edgar KJ (2015) Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis. Carbohydr Polym 132:565–573PubMedCrossRefGoogle Scholar
  37. Metz G, Wu XL, Smith SO (1994) Ramped-amplitude cross polarization in magic-angle-spinning. NMR J Magn Reson Ser A 110:219–227CrossRefGoogle Scholar
  38. Newman RH (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforsch Int J Biol Chem Phys Technol Wood 52:157Google Scholar
  39. Nikolajski M, Wotschadlo J, Clement JH, Heinze T (2012) Amino-functionalized cellulose nanoparticles: preparation, characterization, and interactions with living cells. Macromol Biosci 12:920–925PubMedCrossRefGoogle Scholar
  40. Obst M, Heinze T (2016) Simple synthesis of reactive and nanostructure forming hydrophobic amino cellulose derivatives. Macromol Mater Eng 301:65–70CrossRefGoogle Scholar
  41. O'Connell DW, Birkinshaw C, O'Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ohwoavworhua FO, Adelakun TA (2005) Some physical characteristics of microcrystalline cellulose obtained from raw cotton of cochlospermum planchonii. Trop J Pharm Res 2:501–507Google Scholar
  43. Orelma H, Vuoriluoto M, Johansson L-S, Campbell JM, Filpponen I, Biesalski M, Rojas OJ (2016) Preparation of photoreactive nanocellulosic materials via benzophenone grafting. RSC Adv 6:85100–85106CrossRefGoogle Scholar
  44. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647CrossRefGoogle Scholar
  45. Perras FA et al (2018) Optimal sample formulations for DNP SENS: The importance of radical–surface interactions. Curr Opin Colloid Interface Sci 33:9–18CrossRefGoogle Scholar
  46. Peter J, Kokta BV, Bernard R (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365CrossRefGoogle Scholar
  47. Qu B, Xu Y, Ding L, Rånby B (2000) A new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its model compounds. J Polym Sci Part A Polym Chem 38:999–1005CrossRefGoogle Scholar
  48. Rankin AGM, Trebosc J, Pourpoint F, Amoureux JP, Lafon O (2019) Recent developments in MAS DNP-NMR of materials. Solid State Nucl Mag Res 101:116–143CrossRefGoogle Scholar
  49. Riga EK, Saar JS, Erath R, Hechenbichler M, Lienkamp K (2017) On the limits of benzophenone as cross-linker for surface-attached polymer hydrogels. Polymers 9:14CrossRefGoogle Scholar
  50. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064PubMedCrossRefGoogle Scholar
  51. Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2:7017–7029CrossRefGoogle Scholar
  52. Sauvee C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed 52:10858–10861CrossRefGoogle Scholar
  53. Schmidt S, Liebert T, Heinze T (2014) Synthesis of soluble cellulose tosylates in an eco-friendly medium. Green Chem 16:1941–1946CrossRefGoogle Scholar
  54. Schuler AK, Prucker O, Ruehe J (2016) On the generation of polyether-based coatings through photoinduced C,H insertion crosslinking. Macromol Chem Phys 217:1457–1466CrossRefGoogle Scholar
  55. Selkala T, Sirvio JA, Lorite GS, Liimatainen H (2016) Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea-lithium chloride deep eutectic solvent. Chemsuschem 9:3074–3083PubMedCrossRefGoogle Scholar
  56. Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870CrossRefGoogle Scholar
  57. Solling TI, Diau EW-G, Kötting C, Feyter SD, Zewail AH (2002) Femtochemistry of norrish type-I reactions: IV. Highly excited ketones–experimental. ChemPhysChem 3:79–97PubMedCrossRefGoogle Scholar
  58. Suhas GVK, Carrott PJ, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076PubMedCrossRefGoogle Scholar
  59. Thankamony ASL, Wittmann JJ, Kaushik M, Corzilius B (2017) Dynamic nuclear polarization for sensitivity enhancement in modern solid-state. NMR Prog Nucl Magn Reson Spectrosc 102:120–195CrossRefGoogle Scholar
  60. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm 473:64–72PubMedCrossRefGoogle Scholar
  61. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRefGoogle Scholar
  62. Wang Y, Wang X, Heim L-O, Breitzke H, Buntkowsky G, Zhang K (2015) Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups. Cellulose 22:289–299CrossRefGoogle Scholar
  63. Wang Y et al (2017) Thermoreversible self-assembly of perfluorinated core-coronas cellulose-nanoparticles in dry state. Adv Mater 29:1702473CrossRefGoogle Scholar
  64. Wickholm K, Hult E-L, Larsson PT, Iversen T, Lennholm H (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8:139–148CrossRefGoogle Scholar
  65. Yamamoto H, Horii F, Hirai A (2006) Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 13:327CrossRefGoogle Scholar
  66. Zhao L, Li W, Plog A, Xu Y, Buntkowsky G, Gutmann T, Zhang K (2014) Multi-responsive cellulose nanocrystal–rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR. Phys Chem Chem Phys 16:26322–26329PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Eduard-Zintl Institute of Inorganic and Physical ChemistryTU DarmstadtDarmstadtGermany
  2. 2.Ernst-Berl Institute of Macromolecular ChemistryTU DarmstadtDarmstadtGermany
  3. 3.Institute for ChemistryUniversity KasselKasselGermany

Personalised recommendations