Advertisement

Cellulose

pp 1–17 | Cite as

Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose

  • Tingting Wang
  • Lei Xu
  • Huiying Shen
  • Xiuming Cao
  • Qufu Wei
  • Reza A. Ghiladi
  • Qingqing WangEmail author
Original Research
  • 31 Downloads

Abstract

With the aim of developing self-disinfecting materials to prevent pathogen transmission from surfaces to new hosts, here we report a simple and eco-friendly way to prepare photodynamic bacterial cellulose (BC) onto which the naturally-occurring photosensitizer hypocrellin (Hc) has been covalently appended. The resultant hypocrellin-grafted BC membrane (Hc-BC) was characterized by both physical (SEM, TGA, XRD) and spectroscopic (IR, diffuse reflectance UV–visible) methods, and the photosensitizer loading was found to be 155 nmol Hc/mg membrane. Indirect cytotoxicity tests employing mouse skin fibroblast (L929) cells showed no changes in cell viability, demonstrating that the Hc-BC membrane lacked any leachable components (e.g., unreacted coupling agent or hypocrellin) that could be cytotoxic to mammalian cells. The photodynamic antibacterial activity of Hc-BC was evaluated against gram-positive S. aureus (ATCC-6538) and gram-negative E. coli strain 8099. Our results demonstrated a 99.5 + % (2.7 log units) reduction in S. aureus upon illumination (Xe lamp, 65 ± 5 mW/cm2, 420–780 nm; 30 min), however, no statistically significant inactivation of E. coli was observed. Potentiation with potassium iodide was found to increase the antibacterial efficacy of Hc-BC against S. aureus to 99.997% (4.8 log units) at 10 mM KI, while E. coli was inactivated by 99.1% (2 log units) at 100 mM KI, with the increase in inactivation being attributable to short-lived reactive iodide radicals that are the major biocidal agents in the potentiation of Hc-BC by KI. Taken together, our findings demonstrated that hypocrellin-grafted bacterial cellulose is a sustainable material from which potent photodynamic antibacterial materials may be derived.

Graphic abstract

Keywords

Antibacterial photodynamic inactivation Bacterial cellulose Escherichia coli Hypocrellin Potassium iodide Staphylococcus aureus 

Notes

Acknowledgments

We thank the financial support from the National Natural Science Foundation of China (No. 51603090), China Postdoctoral Science Foundation (No. 2018M630516), Provincial Policy Guidance Program (International Scientific and Technological Cooperation) (No. BZ2018032), and the Fundamental Research Funds for the Central Universities (JUSRP51907A).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10570_2019_2852_MOESM1_ESM.docx (386 kb)
Supplementary material 1 (DOCX 386 kb)

References

  1. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alvarado DR, Argyropoulos DS, Scholle F, Peddinti BST, Ghiladi RA (2019) A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chem 21:3424–3435CrossRefGoogle Scholar
  3. Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:e7CrossRefGoogle Scholar
  4. Bezman SA, Burtis PA, Izod TPJ, Thayer MA (1978) Photodynamic Inactivation of E. coli by Rose Bengal immobilized on Polystyrene Beads. Photochem Photobiol 28:325–329PubMedCrossRefPubMedCentralGoogle Scholar
  5. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826PubMedCrossRefPubMedCentralGoogle Scholar
  6. Braathen G, Chou PT, Frei H (1988) Time-resolved reaction of 1O2 with iodide in aqueous solution. J Phys Chem 92:6610–6615CrossRefGoogle Scholar
  7. Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. Photochem Photobiol 88:527–536PubMedCrossRefPubMedCentralGoogle Scholar
  8. Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA (2015a) Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper. Biomacromol 16:2482–2492CrossRefGoogle Scholar
  9. Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA (2015b) Antiviral, antifungal and antibacterial activities of a bodipy-based photosensitizer. Molecules 20:10604–10621PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME et al (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen H, Tian J, He W, Guo Z (2015) H2O2-activatable and O2-Evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J Am Chem Soc 137:1539–1547PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen W, Wang W, Ge X, Wei Q, Ghiladi RA, Wang Q (2018) Photooxidation properties of photosensitizer/direct dye patterned polyester/cotton fabrics. Fiber Polym 19:1687–1693CrossRefGoogle Scholar
  13. Cheng H, Zhu J-Y, Li S-Y, Zeng J-Y, Lei Q, Chen K-W, Zhang C, Zhang X-Z (2016) An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv Funct Mater 26:7847–7860CrossRefGoogle Scholar
  14. Chio-Srichan S, Oudrhiri N, Bennaceur-Griscelli A, Turhan AG, Dumas P, Refregiers M (2010) Toxicity and phototoxicity of hypocrellin a on malignant human cell lines, evidence of a synergistic action of photodynamic therapy with imatinib mesylate. J Photochem Photobiol B: Biol 99:100–104CrossRefGoogle Scholar
  15. Chu M, Gao H, Liu S, Wang L, Jia Y, Gao M, Wan M, Xu C, Ren L (2018) Functionalization of composite bacterial cellulose with C60 nanoparticles for wound dressing and cancer therapy. RSC Advances 8:18197–18203CrossRefGoogle Scholar
  16. Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T (2018) Antimicrobial photodynamic therapy—what we know and what we don’t. Crit Rev Microbiol 44:571–589PubMedCrossRefPubMedCentralGoogle Scholar
  17. Costa L, Faustino MA, Neves MG, Cunha A, Almeida A (2012) Photodynamic inactivation of mammalian viruses and bacteriophages. Viruses 4:1034–1074PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dei D, Chiti G, Filippis MPd, Fanetti L, Giuliani F, Giuntini F, Giulio M, Fantetti L et al (2006) Phthalocyanines as photodynamic agents for the inactivation of microbial pathogens. J Porphyrins Phthalocyanines 10:147–159CrossRefGoogle Scholar
  19. Diwu Z (1995) Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol 61:529–539PubMedCrossRefPubMedCentralGoogle Scholar
  20. Diwu Z, Lown JW (1990) Hypocrellins and their use in photosensitization. Photochem Photobiol 52:609–616CrossRefGoogle Scholar
  21. Dong J, Ghiladi RA, Wang Q, Cai Y, Wei Q (2018a) Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy. Nanotechnology 29:e265601CrossRefGoogle Scholar
  22. Dong J, Ghiladi RA, Wang Q, Cai Y, Wei Q (2018b) Protoporphyrin IX conjugated bacterial cellulose via diamide spacer arms with specific antibacterial photodynamic inactivation against Escherichia coli. Cellulose 25:1673–1686CrossRefGoogle Scholar
  23. Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  24. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromol 12:3528–3539CrossRefGoogle Scholar
  25. Gardner JM, Abrahamsson M, Farnum BH, Meyer GJ (2009) Visible light generation of iodine atoms and I−I bonds: sensitized I oxidation and I3  photodissociation. J Am Chem Soc 131:16206–16214PubMedCrossRefPubMedCentralGoogle Scholar
  26. Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G (2010) In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54:637–642PubMedCrossRefPubMedCentralGoogle Scholar
  27. Goubeau J, Jahn EL, Kreutzberger A, Grundmann C (1954) Triazines. X. The infrared and raman spectra of 1,3,5-triazine. J Phys Chem 58:1078–1081CrossRefGoogle Scholar
  28. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hamblin MR, Abrahamse H (2018) Inorganic salts and antimicrobial photodynamic therapy: mechanistic conundrums? Molecules 23:3190PubMedCentralCrossRefGoogle Scholar
  30. Henke P, Kozak H, Artemenko A, Kubát P, Forstová J, Mosinger J (2014) Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): postprocessing surface modifications toward efficient antibacterial effect. ACS Appl Mater Interfaces 6:13007–13014PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hettegger H, Gorfer M, Sortino S, Fraix A, Bandian D, Rohrer C, Harreither W, Potthast A, Rosenau T (2015) Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes. Cellulose 22:3291–3304CrossRefGoogle Scholar
  32. Hirayama J, Ikebuchi K, Abe H, Kwon K-W, Ohnishi Y, Horiuchi M, Shinagawa M, Ikuta K et al (1997) Photoinactivation of virus infectivity by hypocrellin A. Photochem Photobiol 66:697–700PubMedCrossRefPubMedCentralGoogle Scholar
  33. Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T et al (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841PubMedPubMedCentralCrossRefGoogle Scholar
  34. Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44:490–499PubMedPubMedCentralCrossRefGoogle Scholar
  35. Huang L, El-Hussein A, Xuan W, Hamblin MR (2018a) Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. J Photochem Photobiol B Biol 178:277–286CrossRefGoogle Scholar
  36. Huang L, Wang M, Huang Y-Y, El-Hussein A, Wolf LM, Chiang LY, Hamblin MR (2018b) Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochem Photobiol Sci 17:638–651PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huang Y-Y, Wintner A, Seed PC, Brauns T, Gelfand JA, Hamblin MR (2018c) Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model. Sci Rep 8:7257PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GHN (1994) Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus. Photochem Photobiol 60:253–255PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jiang X, Gu J, Tian X, Li Y, Huang D (2012a) Modification of cellulose for high glucose generation. Bioresour Technol 104:473–479PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jiang Y, Xia X, Leung AW, Xiang J, Xu C (2012b) Apoptosis of breast cancer cells induced by hypocrellin B under light-emitting diode irradiation. Photodiagn Photodyn Ther 9:337–343CrossRefGoogle Scholar
  41. Jiang C, Scholle F, Ghiladi RA (2019) Mn-doped Zn/S quantum dots as photosensitizers for antimicrobial photodynamic inactivation. SPIE 108630QGoogle Scholar
  42. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRefGoogle Scholar
  43. Li W, Zhou J, Xu Y (2015) Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep 3:617–620PubMedPubMedCentralCrossRefGoogle Scholar
  44. Li G, Nandgaonkar AG, Wang Q, Zhang J, Krause WE, Wei Q, Lucia LA (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation. J Membr Sci 525:89–98CrossRefGoogle Scholar
  45. Liang X-H, Cai Y-J, Liao X-R, Wu K, Wang L, Zhang D-B, Meng Q (2009) Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiol Res 164:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  46. Liu L-P, Yang X-N, Ye L, Xue D-D, Liu M, Jia S-R, Hou Y, Chu L-Q, Zhong C (2017) Preparation and characterization of a photocatalytic antibacterial material: graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydr Polym 174:1078–1086PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, Pasco DS, Walker LA, Khan IA (2004) Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Chemother 48:4450–4452PubMedPubMedCentralCrossRefGoogle Scholar
  48. Majiya H, Chowdhury KF, Stonehouse NJ, Millner P (2019) TMPyP functionalised chitosan membrane for efficient sunlight driven water disinfection. J Water Process Eng 30:100475CrossRefGoogle Scholar
  49. Mbakidi JP, Herke K, Alves S, Chaleix V, Granet R, Krausz P, Leroy-Lhez S, Ouk TS, Sol V (2013) Synthesis and photobiocidal properties of cationic porphyrin-grafted paper. Carbohydr Polym 91:333–338PubMedCrossRefPubMedCentralGoogle Scholar
  50. Menezes S, Capella MA, Caldas LR (1990) Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol, B 5:505–517CrossRefGoogle Scholar
  51. Mesquita MQ, Dias CJ, Neves MGPMS, Almeida A, Faustino MAF (2018) Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules 23:2424CrossRefGoogle Scholar
  52. Miller GG, Brown K, Ballangrud ÅM, Barajas O, Xiao Z, Tulip J, Lown JW, Leithoff JM et al (1997) Preclinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 65:714–722PubMedCrossRefPubMedCentralGoogle Scholar
  53. Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB (2000) Mechanism of Uptake of a Cationic Water-Soluble Pyridinium Zinc Phthalocyanine across the Outer Membrane of Escherichia coli. Antimicrob Agents Chemother 44:522–527PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mosinger J, Mosinger B (1995) Photodynamic sensitizers assay: rapid and sensitive iodometric measurement. Experientia 51:106–109PubMedCrossRefPubMedCentralGoogle Scholar
  55. Nzambe Ta keki JK, Ouk T-S, Zerrouki R, Faugeras P-A, Sol V, Brouillette F (2016) Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers. Mater Sci Eng, C 62:61–67CrossRefGoogle Scholar
  56. Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJL (2007) In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 369–383CrossRefGoogle Scholar
  57. Peddinti BST, Scholle F, Ghiladi RA, Spontak RJ (2018) Photodynamic polymers as comprehensive anti-infective materials: staying ahead of a growing global threat. ACS Appl Mater Interfaces 10:25955–25959PubMedCrossRefPubMedCentralGoogle Scholar
  58. Peres MFS, Nigoghossian K, Primo FL, Saska S, Capote TSO, Caminaga RMS, Messaddeq Y, Ribeiro SJL, Tedesco AC (2016) Bacterial cellulose membranes as a potential drug delivery system for photodynamic therapy of skin cancer. J Braz Chem Soc 27:1949–1959Google Scholar
  59. Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY (2018) Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 140:616–623CrossRefGoogle Scholar
  60. Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12:586–610PubMedPubMedCentralCrossRefGoogle Scholar
  61. Rahimi R, Fayyaz F, Rassa M (2016) The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers. Mater Sci Eng, C 59:661–668CrossRefGoogle Scholar
  62. Ringot C, Sol V, Barriere M, Saad N, Bressollier P, Granet R, Couleaud P, Frochot C, Krausz P (2011) Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromol 12:1716–1723CrossRefGoogle Scholar
  63. Salmon-Divon M, Nitzan Y, Malik Z (2004) Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra-meso (N-methylpyridyl)porphine. Photochem Photobiol Sci 3:423–429PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sebrão CCN, Bezerra AG Jr, de França PHC, Ferreira LE, Westphalen VPD (2017) Comparison of the efficiency of rose Bengal and methylene blue as photosensitizers in photodynamic therapy techniques for enterococcus faecalis inactivation. Photomed Laser Surg 35:18–23PubMedCrossRefPubMedCentralGoogle Scholar
  65. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  66. Silva AF, Borges A, Freitas CF, Hioka N, Mikcha JMG, Simões M (2018) Antimicrobial photodynamic inactivation mediated by rose bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states. Molecules 23:2288PubMedCentralCrossRefGoogle Scholar
  67. Souza DM, Alves PM, Silva MLF, Paulino TP, Coraspe HO, Mendonça MMS, Ribeiro BM, da Silva MV et al (2017) 5-ALA-mediated photodynamic therapy reduces the parasite load in mice infected with Leishmania braziliensis. Parasite Immunol 39:e12403CrossRefGoogle Scholar
  68. Stanley S, Scholle F, Zhu J, Lu Y, Zhang X, Situ X, Ghiladi R (2016) Photosensitizer-embedded polyacrylonitrile nanofibers as antimicrobial non-woven textile. Nanomaterials 6:e77PubMedCrossRefPubMedCentralGoogle Scholar
  69. Stojiljkovic I, Evavold BD, Kumar V (2001) Antimicrobial properties of porphyrins. Expert Opin Investig Drugs 10:309–320PubMedCrossRefPubMedCentralGoogle Scholar
  70. Stoll KR, Scholle F, Zhu J, Zhang X, Ghiladi RA (2019) BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation. Photochem Photobiol Sci 18:1923–1932PubMedCrossRefPubMedCentralGoogle Scholar
  71. Su Y, Rao S, Cai Y, Yang Y (2010) Preparation and characterization of the inclusion complex of hypocrellin A with hydroxypropyl-β-cyclodextrin. Eur Food Res Technol 231:781–788CrossRefGoogle Scholar
  72. Su Y, Sun J, Rao S, Cai Y, Yang Y (2011) Photodynamic antimicrobial activity of hypocrellin A. J Photochem Photobiol B: Biol 103:29–34CrossRefGoogle Scholar
  73. Tavares A, Carvalho CM, Faustino MA, Neves MG, Tome JP, Tome AC, Cavaleiro JA, Cunha A et al (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 8:91–105PubMedPubMedCentralCrossRefGoogle Scholar
  74. Vecchio D, Gupta A, Huang L, Landi G, Avci P, Rodas A, Hamblin MR (2015) Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob Agents Chemother 59:5203–5212PubMedPubMedCentralCrossRefGoogle Scholar
  75. Vieira C, Gomes ATPC, Mesquita MQ, Moura NMM, Neves MGPMS, Faustino MAF, Almeida A (2018) An insight into the potentiation effect of potassium iodide on aPDT efficacy. Front Microbiol 9:2665PubMedPubMedCentralCrossRefGoogle Scholar
  76. Vieira C, Santos A, Mesquita MQ, Gomes ATPC, Neves MGPMS, Faustino MAF, Almeida A (2019) Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. J Porphyrins Phthalocyanines 23:534–545CrossRefGoogle Scholar
  77. Wainwright M, Antczak J, Baca M, Loughran C, Meegan K (2015) Phenothiazinium photoantimicrobials with basic side chains. J Photochem Photobiol, B 150:28–43Google Scholar
  78. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials-are we afraid of the light? Lancet Infect Dis 17:e49–e55PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wang Q, Chen W, Zhang Q, Ghiladi RA, Wei Q (2018) Preparation of Photodynamic P(MMA-co-MAA) composite nanofibers doped with MMT: a facile method for increasing antimicrobial efficiency. Appl Surf Sci 457:247–255CrossRefGoogle Scholar
  80. World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO Priority Pathogens List for R&D of New AntibioticsGoogle Scholar
  81. Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3:185–190CrossRefGoogle Scholar
  82. Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24:4773–4784CrossRefGoogle Scholar
  83. Zhang T, Lin H, Cui L, An N, Tong R, Chen Y, Yang C, Li X, Qu F (2016) NIR-sensitive UCNP@mSiO2 nanovehicles for on-demand drug release and photodynamic therapy. RSC Adv 6:26479–26489CrossRefGoogle Scholar
  84. Zheng X, Wang L, Pei Q, He S, Liu S, Xie Z (2017) Metal–organic framework@porous organic polymer nanocomposite for photodynamic therapy. Chem Mater 29:2374–2381CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tingting Wang
    • 1
  • Lei Xu
    • 2
  • Huiying Shen
    • 1
  • Xiuming Cao
    • 4
  • Qufu Wei
    • 1
  • Reza A. Ghiladi
    • 3
  • Qingqing Wang
    • 1
    • 4
    Email author
  1. 1.Key Laboratory of Eco-Textiles, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.School of Life ScienceUniversity of LiverpoolLiverpool MerseysideUK
  3. 3.Department of ChemistryNorth Carolina State UniversityRaleighUSA
  4. 4.Jiangsu Sunshine Group Co., Ltd.JiangyinChina

Personalised recommendations