Advertisement

Cellulose

pp 1–15 | Cite as

Synthesis, properties and photocatalytic activity of a semiconductor/cellulose composite for dye degradation-a review

  • Yifan Jiang
  • Ibrahim Lawan
  • Weiming Zhou
  • Mingxin Zhang
  • Gerard Franklyn Fernando
  • Liwei Wang
  • Zhanhui YuanEmail author
Review Paper
  • 43 Downloads

Abstract

Photocatalytic degradation is an eco-friendly method that is used to solve problems related to environmental pollution. However, the usage of nano-photocatalysts in the process presents another challenge in terms of the nano-particle agglomerates and their re-usability. To tackle this challenge, an idea of supporting semiconductor with a structural support that makes the photocatalyst porous and recyclable. To ensure sustainability, cellulosic materials as the organic matrix are recently employed. Many studies on the synthesis routes, properties and activity of the semiconductor/cellulose photocatalyst have been reported and exciting results have been achieved. Thus, herein a comprehensive review of some related articles has been made. From the critical review of the related articles conducted, it has been established that the photocatalytic activity of the various semiconductor/cellulose composites improved by 1.3 ~ 3.5 times relative to pure cellulose matrix or semiconductor. Also, it has been established that among these composites, some could be re-used up to 4 times with good photocatalytic efficiency. The synthesis route, properties and mechanism responsible for the efficacy of these semiconductor/cellulose composites have been discussed, and future perspective which provide basis for future research in the area has been suggested.

Keywords

Cellulose matrix Semiconductor Photocatalyst Photodegradation Dye degradation 

Notes

Acknowledgments

This work is supported by the humbly acknowledge international funding provided by Fujian Agriculture and Forestry University (No. KXB16001A), the Department of Science and Technology of Fujian Province (No. 2017H6003), the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials (Minjiang University) (No. FKLTFM1708) and the Fujian Engineering Research Center of New Chinese lacquer Material (Minjiang University) (No. 323030010301).

References

  1. Alrousan DMA, Dunlop PSM, McMurray TA, Byrne JA (2009) Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 43:47–54.  https://doi.org/10.1016/j.watres.2008.10.015 CrossRefPubMedGoogle Scholar
  2. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428.  https://doi.org/10.1016/j.apcatb.2015.03.058 CrossRefGoogle Scholar
  3. Chamberlain JM, Eaves L, Portal JC (1990) Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures. Springer, BostonCrossRefGoogle Scholar
  4. Chen X, Zhang J, Fu X et al (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131:11658–11659.  https://doi.org/10.1021/ja903923s CrossRefPubMedGoogle Scholar
  5. Chen S, Lu W, Han J et al (2019) Robust three-dimensional g-C3N4@cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics. Chem Eng J 359:119–129.  https://doi.org/10.1016/j.cej.2018.11.110 CrossRefGoogle Scholar
  6. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009.  https://doi.org/10.1039/c3nr05529a CrossRefPubMedGoogle Scholar
  7. Coughlan MP (1991) Mechanisms of cellulose degradation by fungi and bacteria. Anim Feed Sci Technol 32:77–100CrossRefGoogle Scholar
  8. Dadvar E, Kalantary RR, Ahmad Panahi H, Peyravi M (2017) Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. J Chem.  https://doi.org/10.1155/2017/6217987 CrossRefGoogle Scholar
  9. Dash A, Sarkar S, Adusumalli VNKB, Mahalingam V (2014) Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+-doped BiOX (X = Cl, Br, I) nanoflakes. Langmuir 30:1401–1409.  https://doi.org/10.1021/la403996m CrossRefPubMedGoogle Scholar
  10. De Sun R, Nakajima A, Fujishima A et al (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1990.  https://doi.org/10.1021/jp002525j CrossRefGoogle Scholar
  11. Dong S, Feng J, Fan M et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630CrossRefGoogle Scholar
  12. Dong P, Cheng X, Huang Z et al (2018) In-situ and phase controllable synthesis of nanocrystalline TiO2 on flexible cellulose fabrics via a simple hydrothermal method. Mater Res Bull 97:89–95.  https://doi.org/10.1016/j.materresbull.2017.08.036 CrossRefGoogle Scholar
  13. Dorneanu PP, Cojocaru C, Olaru N et al (2017) Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup. Appl Surf Sci 424:389–396.  https://doi.org/10.1016/j.apsusc.2017.01.177 CrossRefGoogle Scholar
  14. Fischer K, Gläser R, Schulze A (2014) Nanoneedle and nanotubular titanium dioxide—PES mixed matrix membrane for photocatalysis. Appl Catal B Environ 160–161:456–464.  https://doi.org/10.1016/j.apcatb.2014.05.054 CrossRefGoogle Scholar
  15. Fu Y, Huang T, Zhang L et al (2015) Ag/g-C3N4catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale 7:13723–13733.  https://doi.org/10.1039/c5nr03260a CrossRefPubMedGoogle Scholar
  16. Fujishima A, Hinda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0 CrossRefPubMedGoogle Scholar
  17. Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G (2018) Water resistant cellulose–titanium dioxide composites for photocatalysis. Sci Rep.  https://doi.org/10.1038/s41598-018-20569-w CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gebru KA, Das C (2017) Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: impacts of solvents and additives on morphology, permeability and fouling performances. Chin J Chem Eng 25:911–923.  https://doi.org/10.1016/j.cjche.2016.11.017 CrossRefGoogle Scholar
  19. Geng A, Meng L, Han J et al (2018) Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose 25:4133–4144.  https://doi.org/10.1007/s10570-018-1851-y CrossRefGoogle Scholar
  20. Ghaly MY, Jamil TS et al (2011) Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem Eng J 168:446–454.  https://doi.org/10.1016/j.cej.2011.01.028 CrossRefGoogle Scholar
  21. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342.  https://doi.org/10.1016/j.jenvman.2008.11.017 CrossRefGoogle Scholar
  22. Gupta VK, Pathania D, Asif M, Sharma G (2014) Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity. J Mol Liq 196:107–112.  https://doi.org/10.1016/j.molliq.2014.03.021 CrossRefGoogle Scholar
  23. Hashimoto K, Wasada K, Osaki M et al (2001) Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Appl Catal B Environ 30:429–436.  https://doi.org/10.1016/s0926-3373(00)00258-7 CrossRefGoogle Scholar
  24. Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060.  https://doi.org/10.1016/j.carbpol.2013.09.102 CrossRefPubMedGoogle Scholar
  25. Huang YB, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15:1095–1111.  https://doi.org/10.1039/c3gc40136g CrossRefGoogle Scholar
  26. Huo Y, Xie Z, Wang X et al (2013) Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dyes Pigments 98:106–112.  https://doi.org/10.1016/j.dyepig.2013.02.009 CrossRefGoogle Scholar
  27. Jayalakshmi A, Kim I-C, Kwon Y-N (2015) Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling. RSC Adv 5:48290–48300.  https://doi.org/10.1039/C5RA03499J CrossRefGoogle Scholar
  28. Jin J, Lee H-B-R, Bao Z (2013) Flexible wireless temperature sensors based on ni microparticle-filled binary polymer composites. Adv Mater 25:850–855.  https://doi.org/10.1002/adma.201204082 CrossRefGoogle Scholar
  29. Kihlman M, Medronho BF, Romano AL et al (2013) Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments. J Braz Chem Soc 24:295–303.  https://doi.org/10.5935/0103-5053.20130038 CrossRefGoogle Scholar
  30. Kim K, Ingole PG, Yun S et al (2015) Water vapor removal using CA/PEG blending materials coated hollow fiber membrane. J Chem Technol Biotechnol 90:1117–1123.  https://doi.org/10.1002/jctb.4421 CrossRefGoogle Scholar
  31. Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466.  https://doi.org/10.1002/anie.201001273 CrossRefGoogle Scholar
  32. Kumar DP, Hong S, Reddy DA, Kim TK (2016) Noble metal-free ultrathin MoS2 nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. J Mater Chem A.  https://doi.org/10.1039/c6ta08628d CrossRefGoogle Scholar
  33. Lefatshe K, Muiva CM, Kebaabetswe LP (2017) Extraction of nanocellulose and in situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 164:301–308.  https://doi.org/10.1016/j.carbpol.2017.02.020 CrossRefPubMedGoogle Scholar
  34. Li X, Chen S, Hu W et al (2009) In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr Polym 76:509–512.  https://doi.org/10.1016/j.carbpol.2008.11.014 CrossRefGoogle Scholar
  35. Li C, Liu Q, Shu S et al (2014) Preparation and characterization of regenerated cellulose/TiO2/ZnO nanocomposites and its photocatalytic activity. Mater Lett 117:234–236.  https://doi.org/10.1016/j.matlet.2013.12.009 CrossRefGoogle Scholar
  36. Li J, Fang W, Yu C et al (2015a) Ag-based semiconductor photocatalysts in environmental purification. Appl Surf Sci 358:46–56.  https://doi.org/10.1016/j.apsusc.2015.07.139 CrossRefGoogle Scholar
  37. Li WT, Huang WZ, Zhou H et al (2015b) Synthesis of Zn2+ doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties. J Alloys Compd 638:148–154.  https://doi.org/10.1016/j.jallcom.2015.03.103 CrossRefGoogle Scholar
  38. Li G, Nandgaonkar AG, Wang Q et al (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation. J Membr Sci 525:89–98.  https://doi.org/10.1016/j.memsci.2016.10.033 CrossRefGoogle Scholar
  39. Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394–395:184–192.  https://doi.org/10.1016/j.memsci.2011.12.040 CrossRefGoogle Scholar
  40. Lim W, Wu H, Lim YF, Ho GWW (2018) Facilitating charge transfer of ZnMoS4/CuS p-n heterojunction through ZnO intercalation for efficient photocatalytic hydrogen generation. J Mater Chem A.  https://doi.org/10.1039/c8ta02763c CrossRefGoogle Scholar
  41. Linda T, Muthupoongodi S, Sahaya Shajan X, Balakumar S (2016) Photocatalytic degradation of congo red and crystal violet dyes on cellulose/PVC/ZnO composites under UV light irradiation. Mater Today Proc 3:2035–2041.  https://doi.org/10.1016/j.matpr.2016.04.106 CrossRefGoogle Scholar
  42. Liu S, Ke D, Zeng J et al (2011) Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18:945–956.  https://doi.org/10.1007/s10570-011-9556-5 CrossRefGoogle Scholar
  43. Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science (80-) 347:970–974.  https://doi.org/10.1126/science.aaa3145 CrossRefGoogle Scholar
  44. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661.  https://doi.org/10.1021/jz1007966 CrossRefGoogle Scholar
  45. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126.  https://doi.org/10.1016/j.powtec.2005.08.020 CrossRefGoogle Scholar
  46. Marianna K, Viljami P, Mikko R et al (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179.  https://doi.org/10.1021/ja0532887 CrossRefGoogle Scholar
  47. Mohamed MA, Salleh WNW, Jaafar J et al (2015) Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr Polym 133:429–437.  https://doi.org/10.1016/j.carbpol.2015.07.057 CrossRefPubMedGoogle Scholar
  48. Nakamura S (2016) Solar to chemical energy conversion: theory and application. Springer, ChamGoogle Scholar
  49. Natarajan S, Bajaj HC, Tayade RJ (2016) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci (China).  https://doi.org/10.1016/j.jes.2017.03.011 CrossRefGoogle Scholar
  50. Nevstrueva D, Pihlajamäki A, Nikkola J, Mänttäri M (2018) Effect of precipitation temperature on the properties of cellulose ultrafiltration membranes prepared via immersion precipitation with ionic liquid as solvent. Membr (Basel).  https://doi.org/10.3390/membranes8040087 CrossRefGoogle Scholar
  51. Onwukamike KN, Meier MAR (2019) Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustain Chem Eng 7:1826–1840.  https://doi.org/10.1021/acssuschemeng.8b04990 CrossRefGoogle Scholar
  52. Pathania D, Kumari M, Gupta VK (2015) Fabrication of ZnS-cellulose nanocomposite for drug delivery, antibacterial and photocatalytic activity. Mater Des 87:1056–1064.  https://doi.org/10.1016/j.matdes.2015.08.103 CrossRefGoogle Scholar
  53. Peng X, Wang S, Zhang X et al (2017) Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst. Cellulose 24:4683–4689.  https://doi.org/10.1007/s10570-017-1438-z CrossRefGoogle Scholar
  54. Plantard G, Goetz V, Sacco D (2011) TiO2-coated foams as a medium for solar catalysis. Mater Res Bull 46:231–234.  https://doi.org/10.1016/j.materresbull.2010.11.011 CrossRefGoogle Scholar
  55. Prado AGS, Faria EA, Souzade JR, Torres JD (2005) Ammonium complex of niobium as a precursor for the hydrothermal preparation of cellulose acetate/Nb2O5 photocatalyst. J Mol Catal A: Chem 237:115–119.  https://doi.org/10.1016/j.molcata.2005.04.055 CrossRefGoogle Scholar
  56. Quéré D (1999) Fluid coating on a fiber. Ann Rev Fluid Mech 31:347–384.  https://doi.org/10.1146/annurev.fluid.31.1.347 CrossRefGoogle Scholar
  57. Rahaman MN (2017) Ceramic processing. CRC Press, Boca RatonCrossRefGoogle Scholar
  58. Rajeswari A, Vismaiya S, Pius A (2017) Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J 313:928–937.  https://doi.org/10.1016/j.cej.2016.10.124 CrossRefGoogle Scholar
  59. Sabbaghan M, Argyropoulos DS (2018) Synthesis and characterization of nano fibrillated cellulose/Cu2O films; micro and nano particle nucleation effects. Carbohydr Polym 197:614–622.  https://doi.org/10.1016/j.carbpol.2018.06.011 CrossRefPubMedGoogle Scholar
  60. Saljoughi E, Amirilargani M, Mohammadi T (2010) Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes. Desalination 262:72–78.  https://doi.org/10.1016/j.desal.2010.05.046 CrossRefGoogle Scholar
  61. Schneller T (2013) Chemical solution deposition of functional oxide thin films. Springer, BerlinCrossRefGoogle Scholar
  62. Schütz C, Sort J, Bacsik Z et al (2012) Hard and transparent films formed by nanocellulose-tio2 nanoparticle hybrids. PLoS ONE 7:1–8.  https://doi.org/10.1371/journal.pone.0045828 CrossRefGoogle Scholar
  63. Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649.  https://doi.org/10.1007/s002530100710 CrossRefPubMedGoogle Scholar
  64. Sharma SK (2015) Green chemistry for dyes removal from wastewater: research trends and applications. Wiley, New JerseyCrossRefGoogle Scholar
  65. Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122.  https://doi.org/10.1007/s10570-017-1421-8 CrossRefGoogle Scholar
  66. Siddique K, Rizwan M, Shahid MJ et al (2017) Textile wastewater treatment options: a critical review. Springer, ChamGoogle Scholar
  67. Singh M, Jampaiah D, Kandjani AE et al (2018) Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. Nanoscale.  https://doi.org/10.1039/c7nr08388b CrossRefPubMedGoogle Scholar
  68. Skipina B, Dudi D (2018) Generation of photo charge in poly(ethyleneimine)-TiO2-anthocyanin modified papers conditioned at different humidities. Dyes Pigments 149:51–58.  https://doi.org/10.1016/j.dyepig.2017.08.064 CrossRefGoogle Scholar
  69. Su F, Smitha CM, Lipner G et al (2010) mpg-C3N4-catalyzed selective oxidation of alcohols using o2 and visible light. J Am Chem Soc 132:16299–16301.  https://doi.org/10.1021/ja102866p CrossRefPubMedGoogle Scholar
  70. Su J, Mosse WKJ, Sharman S et al (2012) Paper strength development and recyclability with polyamideamine-epichlorohydrin (PAE). BioResources 7:913–924.  https://doi.org/10.15376/biores.7.1.0913-0924 CrossRefGoogle Scholar
  71. Suresh S (2013) Semiconductor nanomaterials, methods and applications: a review. Nanosci Nanotechnol 3:62–74.  https://doi.org/10.5923/j.nn.20130303.06 CrossRefGoogle Scholar
  72. Suzuki M (1990) Adsorption engineering. Kodansha Ltd, TokyoGoogle Scholar
  73. Tu K, Wang Q, Lu A, Zhang L (2014) Portable visible-light photocatalysts constructed from Cu2O nanoparticles and graphene oxide in cellulose matrix. J Phys Chem C 118:7202–7210.  https://doi.org/10.1021/jp412802h CrossRefGoogle Scholar
  74. Umar M, Abdul Aziz H (2013) Photocatalytic degradation of organic pollutants in water, organic pollutants - monitoring, risk and treatment, M. NageebRashed, IntechOpen.  https://doi.org/10.5772/53699
  75. Wakerley DW, Kuehnel MF, Orchard KL et al (2017) Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat Energy 2:17021.  https://doi.org/10.1038/nenergy.2017.21 CrossRefGoogle Scholar
  76. Wang X, Maeda K, Thomas A et al (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76.  https://doi.org/10.1038/nmat2317 CrossRefGoogle Scholar
  77. Wang Q, Cai J, Zhang L (2014) In situ synthesis of Ag3PO4/cellulose nanocomposites with photocatalytic activities under sunlight. Cellulose 21:3371–3382.  https://doi.org/10.1007/s10570-014-0340-1 CrossRefGoogle Scholar
  78. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206.  https://doi.org/10.1016/j.progpolymsci.2015.07.003 CrossRefGoogle Scholar
  79. Wang J, Jin C, Sun Q, Zhang Q (2017a) Fabrication of nanocrystalline anatase TiO2 in a graphene network as a bamboo coating material with enhanced photocatalytic activity and fire resistance. J Alloys Compd 702:418–426.  https://doi.org/10.1016/j.jallcom.2017.01.263 CrossRefGoogle Scholar
  80. Wang Z, Wang J, Li L et al (2017b) Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. J Mater Chem A.  https://doi.org/10.1039/c7ta06085h CrossRefGoogle Scholar
  81. Wang CY, Zhang YJ, Wang WK et al (2018a) Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Appl Catal B Environ 221:320–328.  https://doi.org/10.1016/j.apcatb.2017.09.036 CrossRefGoogle Scholar
  82. Wang H, Zhang W, Li X et al (2018b) Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Appl Catal B Environ 225:218–227.  https://doi.org/10.1016/j.apcatb.2017.11.079 CrossRefGoogle Scholar
  83. Wei F, Zeng H, Peng C et al (2008) Various TiO2 microcrystals: controlled synthesis and enhanced photocatalytic activities. Chem Eng J 144:119–123.  https://doi.org/10.1016/j.cej.2008.06.015 CrossRefGoogle Scholar
  84. Wei J, Yang Z, Sun Y et al (2019) Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J Mater Sci 54:6709–6718.  https://doi.org/10.1007/s10853-019-03322-0 CrossRefGoogle Scholar
  85. Wittmar A, Thierfeld H, Köcher S, Ulbricht M (2015) Routes towards catalytically active TiO2 doped porous cellulose. RSC Adv 5:35866–35873.  https://doi.org/10.1039/C5RA03707G CrossRefGoogle Scholar
  86. Wu T, Li X, Zhang D et al (2016) Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1-xsolid solutions. J Alloys Compd 671:318–327.  https://doi.org/10.1016/j.jallcom.2016.01.267 CrossRefGoogle Scholar
  87. Wu Y, She J, Qing Y et al (2018) Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation. Appl Surf Sci 464:606–615.  https://doi.org/10.1016/j.apsusc.2018.09.126 CrossRefGoogle Scholar
  88. Xu M, Wang H, Wang G et al (2017) Study of synergistic effect of cellulose on the enhancement of photocatalytic activity of ZnO. J Mater Sci 52:8472–8484.  https://doi.org/10.1007/s10853-017-1106-6 CrossRefGoogle Scholar
  89. Xu F, Wei MW, Zhang XZ et al (2019) How pore hydrophilicity influences water permeability? Research.  https://doi.org/10.34133/2019/2581241 CrossRefPubMedCentralGoogle Scholar
  90. Yang P, Wang K, Liang Z et al (2012) Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale 4:5755–5760.  https://doi.org/10.1039/c2nr31380d CrossRefPubMedGoogle Scholar
  91. Yin J, Fan H, Zhou J (2016a) Cellulose acetate/poly(vinyl alcohol) and cellulose acetate/crosslinked poly(vinyl alcohol) blend membranes: preparation, characterization, and antifouling properties. Desalination Water Treat 57:10572–10584.  https://doi.org/10.1080/19443994.2015.1040846 CrossRefGoogle Scholar
  92. Yin Y, Huang R, Zhang W et al (2016b) Superhydrophobic–superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate. Chem Eng J 289:99–105.  https://doi.org/10.1016/j.cej.2015.12.049 CrossRefGoogle Scholar
  93. Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811.  https://doi.org/10.1021/jp1005617 CrossRefGoogle Scholar
  94. Zhang H, Xu P, Du G et al (2011a) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283CrossRefGoogle Scholar
  95. Zhang X, Chen W, Lin Z et al (2011b) Preparation and photocatalysis properties of bacterial cellulose/TiO2 composite membrane doped with rare earth elements. Synth React Inorg Met Org Nano Met Chem 41:997–1004CrossRefGoogle Scholar
  96. Zhang H, Luo X, Tang H et al (2017a) A novel candidate for wound dressing: transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Mater Sci Eng, C 79:84–92.  https://doi.org/10.1016/j.msec.2017.05.019 CrossRefGoogle Scholar
  97. Zhang P, Qiu Y, Yang S et al (2017b) Oxygen-deficient bismuth oxychloride nanosheets: superior photocatalytic performance. Mater Res Bull 96:478–484.  https://doi.org/10.1016/j.materresbull.2017.03.071 CrossRefGoogle Scholar
  98. Zhang F, Zhuang HQ, Zhang W et al (2018a) Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water. Catal Today.  https://doi.org/10.1016/j.cattod.2018.03.060 CrossRefPubMedGoogle Scholar
  99. Zhang X, Shu Y, Su S, Zhu J (2018b) One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle- triggered photo-catalytic degradation. Carbohydr Polym 181:499–505.  https://doi.org/10.1016/j.carbpol.2017.10.041 CrossRefPubMedGoogle Scholar
  100. Zhao Z-Y, Dai W-W (2015) Electronic structure and optical properties of BiOI ultrathin films for photocatalytic water splitting. Inorg Chem 54:10732–10737.  https://doi.org/10.1021/acs.inorgchem.5b01714 CrossRefPubMedGoogle Scholar
  101. Zhao H, Chen S, Quan X et al (2016) Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl Catal B Environ 194:134–140.  https://doi.org/10.1016/j.apcatb.2016.04.042 CrossRefGoogle Scholar
  102. Zhao SW, Zheng M, Zou XH et al (2017) Self-assembly of hierarchically structured cellulose@ZnO composite in solid–liquid homogeneous phase: synthesis, DFT calculations, and enhanced antibacterial activities. ACS Sustain Chem Eng 5:6585–6596.  https://doi.org/10.1021/acssuschemeng.7b00842 CrossRefGoogle Scholar
  103. Zhou Y, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:24–26.  https://doi.org/10.1038/srep01536 CrossRefGoogle Scholar
  104. Zhou Z, Peng X, Zhong L et al (2016) Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation. Carbohydr Polym 136:322–328.  https://doi.org/10.1016/j.carbpol.2015.09.009 CrossRefPubMedGoogle Scholar
  105. Zhou C, Lai C, Zhang C et al (2018) Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications. Appl Catal B Environ 238:6–18CrossRefGoogle Scholar
  106. Zhou M, Chen J, Hou C et al (2019a) Applied surface science organic-free synthesis of porous CdS sheets with controlled windows size on bacterial cellulose for photocatalytic degradation and H2 production. Appl Surf Sci 470:908–916.  https://doi.org/10.1016/j.apsusc.2018.11.207 CrossRefGoogle Scholar
  107. Zhou W, Sun S, Jiang Y et al (2019b) Template in situ synthesis of flower-like BiOBr/microcrystalline cellulose composites with highly visible-light photocatalytic activity. Cellulose.  https://doi.org/10.1007/s10570-019-02722-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Materials EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Fujian Key Laboratory of Novel Functional Textile Fibers and MaterialsMinjiang UniversityFuzhouChina
  3. 3.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  4. 4.OceanCollegeMinjiang UniversityFuzhouChina

Personalised recommendations