pp 1–14 | Cite as

One-step hydrothermal synthesis of a flexible nanopaper-based Fe3+ sensor using carbon quantum dot grafted cellulose nanofibrils

  • Bailiang XueEmail author
  • Yang Yang
  • Rui Tang
  • Yongchang Sun
  • Shaoni Sun
  • Xuefei Cao
  • Peiyi Li
  • Zhao Zhang
  • Xinping Li
Original Research


Photoluminescent flexible nanopaper-based Fe3+ sensors were fabricated by carbon quantum dot (CQD) grafted oxidized cellulose nanofibrils (OCNF). Transparent and tunable luminescent CQD–OCNF nanopapers were facilely synthesized from citric acid, ethanediamine and an OCNF suspension using a one-pot hydrothermal method without catalysts. The morphology and chemical structures of the CQD–OCNF nanopapers were investigated by TEM, SEM, XRD, FT-IR spectroscopy, XPS and CP/MAS 13C NMR spectroscopy. The carboxyl groups of OCNF were covalently bonded to the amino groups of the newly-formed CQDs. The resultant CQD–OCNF nanopapers presented high transparency in bright field imaging and strong blue emission under ultraviolet excitation. The CQD–OCNF nanopaper was used as a highly sensitive and selective fluorescent sensor for Fe3+ ions. This study provides a facile and effective method for fabricating luminescent CQD–OCNF nanopapers with high selectivity for the detection of Fe3+.

Graphic abstract


Carbon quantum dots Oxidized cellulose nanofibrils Fluorescence Nanopaper-based Fe3+ sensor 



The authors wish to express their gratitude for the grants from the Natural Science Foundation of China (21706154, 41702367), National Key Research and Development Program of China (2017YFB0307903), Natural Science Foundation of Shaanxi Province, China (2019JQ-277) and the Doctoral Scientific Research Fund by Shaanxi University of Science & Technology (BJ15-26).

Supplementary material

10570_2019_2846_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1141 kb)


  1. Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337. CrossRefPubMedGoogle Scholar
  2. Chen L, Lai C, Marchewka R, Berry RM, Tam KC (2016) Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 8:13288–13296. CrossRefPubMedGoogle Scholar
  3. Chen WS, Yu HP, Lee SY, Wei T, Li J, Fan ZJ (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. CrossRefPubMedGoogle Scholar
  4. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509. CrossRefPubMedGoogle Scholar
  5. Feng X, Zhao YF, Jiang YQ, Miao M, Cao SM, Fang JH (2017) Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr Polym 161:253–260. CrossRefPubMedGoogle Scholar
  6. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  7. Guan QS, Song RY, Wu WB, Zhang L, Jing Y, Dai HQ, Fang GG (2018) Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method. Cellulose 25(12):7017–7029. CrossRefGoogle Scholar
  8. Guo YM, Zhang LF, Zhang SS, Yang Y, Chen XH, Zhang MC (2015) Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens Bioelectron 63:61–71. CrossRefPubMedGoogle Scholar
  9. Jiang YQ, Zhao YF, Feng X, Fang JH, Shi LY (2016) TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Adv 6:6504–6510. CrossRefGoogle Scholar
  10. Junka K, Guo JQ, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromol 15:876–881. CrossRefGoogle Scholar
  11. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. CrossRefGoogle Scholar
  12. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromol 14:1160–1165. CrossRefGoogle Scholar
  13. Kong B, Zhu AW, Ding CQ, Zhao XM, Li B, Tian Y (2012) Carbon dot-based inorganic–organic nano system for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24(43):5844–5848. CrossRefPubMedGoogle Scholar
  14. Li J, Zuo KM, Wu WB, Xu ZY, Yi YG, Jing Y, Dai HQ, Fang GG (2018) Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr Polym 196:376–384. CrossRefPubMedGoogle Scholar
  15. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. CrossRefPubMedGoogle Scholar
  16. Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959. CrossRefPubMedGoogle Scholar
  17. Liu YS, Zhao YA, Zhang YY (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens Actuator B-Chem 196:647–652. CrossRefGoogle Scholar
  18. Liu Y, Liu YN, Park SJ, Zhang YF, Kim T, Chae S, Park M, Kim HY (2015) One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe3+ detection. J Mater Chem A 3(34):17747–17754. CrossRefGoogle Scholar
  19. Liu K, Chen LH, Huang LL, Lai YN (2016a) Evaluation of ethylenediamine-modified nanofibrillated cellulose/chitosan composites on adsorption of cationic and anionic dyes from aqueous solution. Carbohydr Polym 151:1115–1119. CrossRefPubMedGoogle Scholar
  20. Liu SQ, Liu RL, Xing X, Yang CQ, Xu Y, Wu DQ (2016b) Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(III) ion. RSC Adv 6(38):31884–31888. CrossRefGoogle Scholar
  21. Lv PF, Yao YX, Li DW, Zhou HM, Naeem MA, Feng Q, Huang JY, Cai YB, Wei QF (2017) Self-assembly of nitrogen-doped carbon dots anchored on bacterial cellulose and their application in iron ion detection. Carbohydr Polym 172:93–101. CrossRefPubMedGoogle Scholar
  22. Miao M, Zhao JP, Feng X, Cao Y, Cao SM, Zhao YF, Ge XQ, Sun LN, Shi LY, Fang JH (2015a) Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. J Mater Chem C 3:2511–2517. CrossRefGoogle Scholar
  23. Miao P, Tang YG, Hana K, Wang BD (2015b) Facile synthesis of carbon nanodots from ethanol and their application in ferric(III) ion assay. J Mater Chem A 3(29):15068–15073. CrossRefGoogle Scholar
  24. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. CrossRefGoogle Scholar
  25. Pan JH, Zheng ZY, Yang JY, Wu YY, Lu FS, Chen YW, Gao WH (2017) A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta 166:1–7. CrossRefPubMedGoogle Scholar
  26. Qing Y, Cai ZY, Wu YQ, Yao CH, Wu QL, Li XJ (2015) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crop Prod 77:13–20. CrossRefGoogle Scholar
  27. Qu KG, Wang JS, Ren JS, Qu XG (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Eur J 19(22):7243–7249. CrossRefPubMedGoogle Scholar
  28. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probe. Chem Soc Rev 41(21):7195–7227. CrossRefPubMedGoogle Scholar
  29. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644. CrossRefGoogle Scholar
  30. Sharma V, Saini AK, Mobin SM (2016) Multicolour fluorescent carbon nanoparticle probes for live cell imaging and dual palladium and mercury sensors. J Mater Chem B 4:2466–2476. CrossRefGoogle Scholar
  31. Shi LH, Li YY, Li XF, Wen XP, Zhang GM, Yang J, Dong C, Shuang SM (2015) Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining. Nanoscale 7(16):7394–7401. CrossRefPubMedGoogle Scholar
  32. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. CrossRefGoogle Scholar
  33. Tam TV, Trung NB, Kim HR, Chung JS, Choi WM (2014) One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sens Actuator B-Chem 202:568–573. CrossRefGoogle Scholar
  34. Tian XK, Peng H, Li Y, Yang C, Zhou ZX, Wang YX (2017) Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sens Actuator B-Chem 243:1002–1009. CrossRefGoogle Scholar
  35. Wang G, Feng C (2017) Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers 9:220. CrossRefPubMedCentralGoogle Scholar
  36. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG (2011) Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater 21:1027–1031. CrossRefGoogle Scholar
  37. Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR). Methodol Mater 6:359–391. CrossRefGoogle Scholar
  38. Wesp EF, Brode WR (1934) The absorption spectra of ferric compounds. I. The ferric chloride—phenol reaction. J Am Chem Soc 56(5):1037–1042. CrossRefGoogle Scholar
  39. Xue J, Song F, Yin XW, Wang XL, Wang YZ (2015) Let it shine: a transparent and photo luminescent foldable nanocellulose/quantum dot paper. ACS Appl Mater Interfaces 7:10076–10079. CrossRefPubMedGoogle Scholar
  40. Xue BL, Zhang Z, Sun YC, Wang JJ, Jiang HE, Du M, Chi CC, Li XP (2018) Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydr Polym 186:176–183. CrossRefPubMedGoogle Scholar
  41. Yang YH, Cui JH, Zheng MT, Hu CF, Tan SZ, Xiao Y, Yang Q, Liu YL (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48:380–382. CrossRefGoogle Scholar
  42. Zhang Z, Chang H, Xue BL, Zhang SF, Li XP, Wong WK, Li KC, Zhu XJ (2018) Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)-carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose 25:377–389. CrossRefGoogle Scholar
  43. Zhao YF, Wei RY, Feng X, Sun LN, Liu PP, Su YX, Shi LY (2016) Dual-mode luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with rare-earth up conversion nanoparticles. ACS Appl Mater Interfaces 8:21555–21562. CrossRefPubMedGoogle Scholar
  44. Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bailiang Xue
    • 1
    Email author
  • Yang Yang
    • 1
  • Rui Tang
    • 1
  • Yongchang Sun
    • 2
  • Shaoni Sun
    • 3
  • Xuefei Cao
    • 3
  • Peiyi Li
    • 1
  • Zhao Zhang
    • 1
  • Xinping Li
    • 1
  1. 1.College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi’anChina
  2. 2.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of EducationChang’an UniversityXi’anChina
  3. 3.Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijingChina

Personalised recommendations