pp 1–11 | Cite as

Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP

  • Junyu Chen
  • Liucheng Mao
  • Hongxu Qi
  • Dazhuang Xu
  • Hongye Huang
  • Meiying Liu
  • Yuanqing Wen
  • Fengjie DengEmail author
  • Xiaoyong ZhangEmail author
  • Yen WeiEmail author
Original Research


In recent years, cellulose nanocrystal (CNC) based materials have attracted great research attention for different applications owing to their unique properties and facile modification chemistry. In this work, CNC based thermo-responsive fluorescent composites were successfully prepared via the metal-free surface-initiated atom transfer radical polymerization (ATRP) of NIPAAm and a Schiff base containing dye (HDPAP). Results demonstrated CNC-poly (NIPAAm–HDPAP) composites display sensitive temperature-responsive coil-to-globule transition behavior at the temperature of lower critical solution temperature. The bright fluorescence offered by the Schiff base dye (HDPAP) was also confirmed by fluorescence spectra. Moreover, the preparation method of light meditated ATRP was proved to become the promising way in fabrication of multifunctional nanomaterials for its incomparable advantages, including low energy consumption, high efficiency, good monomer adaptation, free of transition metal ions.

Graphic abstract


Cellulose nanocrystals Fluorescent polymer composites Thermo-responsive polymers Light-induced surface-initiated polymerization Aggregation-induced emission 



This research was supported by the National Science Foundation of China (Nos. 21788102, 21865016, 21474057, 21564006, 21561022, 21644014, 51673107).

Supplementary material

10570_2019_2845_MOESM1_ESM.doc (424 kb)
Supplementary material 1 (DOC 423 kb)


  1. Alves L, Medronho B, Antunes FE, Fernández-García MP, Ventura J, Araújo JP, Romano A, Lindman B (2015) Unusual extraction and characterization of nanocrystalline cellulose from cellulose derivatives. J Mol Liq 210:106–112CrossRefGoogle Scholar
  2. Andresen M, Stenstad P, Møretrø T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155PubMedCrossRefGoogle Scholar
  3. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  4. Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659PubMedCrossRefGoogle Scholar
  5. Bai L, Jiang X, Sun Z, Pei Z, Ma A, Wang W, Chen H, Yang H, Yang L, Wei D (2019) Self-healing nanocomposite hydrogels based on modified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP. Cellulose 26:1–15CrossRefGoogle Scholar
  6. Barazzouk S (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493CrossRefGoogle Scholar
  7. Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240CrossRefGoogle Scholar
  8. Boujemaoui A, Mongkhontreerat S, Malmström E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464PubMedCrossRefGoogle Scholar
  9. Boujemaoui A, Mazières S, Malmström E, Destarac M, Carlmark A (2016) SI-RAFT/MADIX polymerization of vinyl acetate on cellulose nanocrystals for nanocomposite applications. Polymer 99:240–249CrossRefGoogle Scholar
  10. Cao Q-y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y (2017a) Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method. Mater Sci Eng C Mater 80:578–583CrossRefGoogle Scholar
  11. Cao Q-y, Jiang R, Liu M, Wan Q, Xu D, Tian J, Huang H, Wen Y, Zhang X, Wei Y (2017b) Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications. Mater Sci Eng C Mater 80:411–416CrossRefGoogle Scholar
  12. Chen J, Liu M, Huang H, Deng F, Mao L, Wen Y, Huang L, Tian J, Zhang X, Wei Y (2018) Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization. J Mol Liq 259:179–185CrossRefGoogle Scholar
  13. Chen M, Fan D, Liu S, Rao Z, Dong Y, Wang W, Chen H, Bai L, Cheng Z (2019) Fabrication of self-healing hydrogels with surface functionalized microcapsules from stellate mesoporous silica. Polym Chem 10:503–511CrossRefGoogle Scholar
  14. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  16. Follain N, Marais MF, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344CrossRefGoogle Scholar
  17. Gan L, Wang Y, Zhang M, Xia X, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Sci Bull 64:934–940CrossRefGoogle Scholar
  18. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651CrossRefGoogle Scholar
  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hiraoki R, Tanaka R, Ono Y, Nakamura M, Isogai T, Saito T, Isogai A (2018) Determination of length distribution of TEMPO-oxidized cellulose nanofibrils by field-flow fractionation/multi-angle laser-light scattering analysis. Cellulose 25:1599–1606CrossRefGoogle Scholar
  21. Hondo H, Saito T, Isogai A (2019a) Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10. Cellulose 26:1479–1487CrossRefGoogle Scholar
  22. Hondo H, Saito T, Isogai A (2019b) Preparation of oxidized celluloses in a TEMPO/NaBr system using different chlorine reagents in water. Cellulose 26:3021–3030CrossRefGoogle Scholar
  23. Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y (2019) A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Mater Sci Eng C Mater 94:270–278CrossRefGoogle Scholar
  24. Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jiang R, Liu H, Liu M, Tian J, Huang Q, Huang H, Wen Y, Cao Q-y, Zhang X, Wei Y (2017a) A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging. Mater Sci Eng C Mater 81:416–421CrossRefGoogle Scholar
  26. Jiang R, Liu M, Li C, Huang Q, Huang H, Wan Q, Wen Y, Cao Q-y, Zhang X, Wei Y (2017b) Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: synthesis, aggregation-induced emission and biological imaging. Mater Sci Eng C Mater 80:708–714CrossRefGoogle Scholar
  27. Jiang R, Liu M, Huang H, Mao L, Huang Q, Wen Y, Cao Q-y, Tian J, Zhang X, Wei Y (2018) Ultrafast construction and biological imaging applications of AIE-active sodium alginate-based fluorescent polymeric nanoparticles through a one-pot microwave-assisted Döbner reaction. Dyes Pigments 153:99–105CrossRefGoogle Scholar
  28. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99CrossRefGoogle Scholar
  29. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin NJC (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189CrossRefGoogle Scholar
  30. Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir 26:13450–13456PubMedCrossRefGoogle Scholar
  31. Kubo R, Saito T, Isogai A (2019) Preparation and characterization of carboxylated cellulose nanofibrils with dual metal counterions. Cellulose 26:4313–4323CrossRefGoogle Scholar
  32. Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580CrossRefGoogle Scholar
  33. Lin N, Huang J, Chang PR, Feng J, Yu J (2012) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842CrossRefGoogle Scholar
  34. Lin F, Lu X, Wang Z, Lu Q, Lin G, Huang B, Lu B (2019) In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose 26:1825–1839CrossRefGoogle Scholar
  35. Liu XD, Zhang L, Cheng ZP, Zhu X (2016) Metal-free photoinduced electron transfer–atom transfer radical polymerization (PET-ATRP) via a visible light organic photocatalyst. Polym Chem 7:689–700CrossRefGoogle Scholar
  36. Liu B, Yang D, Man H, Liu Y, Chen H, Xu H, Wang W, Bai L (2018) A green Pickering emulsion stabilized by cellulose nanocrystals via RAFT polymerization. Cellulose 25:77–85CrossRefGoogle Scholar
  37. Liu S, Rao Z, Wu R, Sun Z, Yuan Z, Bai L, Wang W, Yang H, Chen H (2019a) Fabrication of microcapsules by the combination of biomass porous carbon and polydopamine for dual self-healing hydrogels. J Agric Food Chem 67:1061–1071PubMedCrossRefPubMedCentralGoogle Scholar
  38. Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y (2019b) Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. Mater Sci Eng C Mater 94:310–317CrossRefGoogle Scholar
  39. Lu P, Hsieh YL (2009) Cellulose nanocrystal-filled poly (acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:415604PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRefGoogle Scholar
  41. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573CrossRefGoogle Scholar
  42. Lu C, Wang C, Yu J, Wang J, Chu F (2019) Metal-free ATRP “grafting from” technique for renewable cellulose graft copolymers. Green Chem 21:2759–2770CrossRefGoogle Scholar
  43. Majoinen J, Walther A, Mckee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997PubMedCrossRefGoogle Scholar
  44. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931CrossRefGoogle Scholar
  46. Ono Y, Funahashi R, Saito T, Isogai A (2018) Investigation of stability of branched structures in softwood cellulose using SEC/MALLS/RI/UV and sugar composition analyses. Cellulose 25:2667–2679CrossRefGoogle Scholar
  47. Ouyang H, Zhou M, Guo Y, He M, Huang H, Ye X, Feng Y, Zhou X, Yang S (2014) Metabolites profiling of Pulsatilla saponin D in rat by ultra performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Fitoterapia 96:152–158PubMedCrossRefGoogle Scholar
  48. Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502PubMedCrossRefGoogle Scholar
  49. Rao Z, Liu S, Wu R, Wang G, Sun Z, Bai L, Wang W, Chen H, Yang H, Wei D, Niu Y (2019) Fabrication of dual network self-healing alginate/guar gum hydrogels based on polydopamine-type microcapsules from mesoporous silica nanoparticles. Int J Biol Macromol 129:916–926PubMedCrossRefGoogle Scholar
  50. Sahoo GP, Bhui DK, Bar H, Sarkar P, Samanta S, Pyne S, Misra A (2010) Synthesis and characterization of gold nanoparticles adsorbed in methyl cellulose micro fibrils. J Mol Liq 155:91–95CrossRefGoogle Scholar
  51. Shi Y, Jiang R, Liu M, Fu L, Zeng G, Wan Q, Mao L, Deng F, Zhang X, Wei Y (2017) Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater Sci Eng C Mater 77:972–977CrossRefGoogle Scholar
  52. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411PubMedCrossRefPubMedCentralGoogle Scholar
  53. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  54. Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40:791–799CrossRefGoogle Scholar
  55. Sumerlin BS (2016) Proteins as Initiators of Controlled Radical Polymerization: grafting-from via ATRP and RAFT. ACS Macro Lett 1:141–145CrossRefGoogle Scholar
  56. Tang L, Huang B, Lu Q, Wang S, Wen O, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Bioresour Technol 127:100–105PubMedCrossRefPubMedCentralGoogle Scholar
  57. Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Read de Alaniz J, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136:16096–16101PubMedCrossRefPubMedCentralGoogle Scholar
  58. Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly (N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976CrossRefGoogle Scholar
  59. Wang G, Xi M, Bai L, Liang Y, Yang L, Wang W, Chen H, Yang H (2019) Pickering emulsion of metal-free photoinduced electron transfer-ATRP stabilized by cellulose nanocrystals. Cellulose 26:5947–5957CrossRefGoogle Scholar
  60. Way AE, Hsu L, Shanmuganathan K, Weder C, Rowan SJ (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006CrossRefGoogle Scholar
  61. Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837CrossRefGoogle Scholar
  62. Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly (styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412CrossRefGoogle Scholar
  63. Yoo MK, Lee YM, Cho CS, Sung YK (2000) Effect of polyelectrolyte on the lower critical solution temperature of poly (N-isopropyl acrylamide) in the poly (NIPAAm-co-acrylic acid) hydrogel. Polymer 41:5713–5719CrossRefGoogle Scholar
  64. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944CrossRefGoogle Scholar
  65. Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014a) Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym Chem 5:399–404CrossRefGoogle Scholar
  66. Zhang X, Zhang X, Yang B, Liu M, Liu W, Chen Y, Wei Y (2014b) Polymerizable aggregation induced emission dye based fluorescent nanoparticles for cell imaging applications. Polym Chem 5:356–360CrossRefGoogle Scholar
  67. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS (2015) Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C- Mater 49:463–471CrossRefGoogle Scholar
  68. Zhang X, He M, Lei S, Wu B, Tan T, Ouyang H, Xu W, Feng Y (2018a) An integrative investigation of the therapeutic mechanism of Ainsliaea fragrans Champ. in cervicitis using liquid chromatography tandem mass spectrometry based on a rat plasma metabolomics strategy. J Pharm Biomed 156:221–231CrossRefGoogle Scholar
  69. Zhang X, Li J, Xie B, Wu B, Lei S, Yao Y, He M, Ouyang H, Feng Y, Xu W, Yang S (2018b) Comparative metabolomics analysis of cervicitis in human patients and a phenol mucilage-induced rat model using liquid chromatography tandem mass spectrometry. Front Pharmacol 9:282PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zhang Y-J, Ma X-Z, Gan L, Xia T, Shen J, Huang J (2018c) Fabrication of fluorescent cellulose nanocrystal via controllable chemical modification towards selective and quantitative detection of Cu (II) ion. Cellulose 25:5831–5842CrossRefGoogle Scholar
  71. Zhang Z, Tam KC, Sebe G, Wang X (2018d) Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydr Polym 199:603–609PubMedCrossRefGoogle Scholar
  72. Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854PubMedCrossRefGoogle Scholar
  73. Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson LS, Efimenko K, Österberg M, Laine J (2010) Poly (N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of ChemistryNanchang UniversityNanchangChina
  2. 2.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Chemistry and the Tsinghua Center for Frontier Polymer ResearchTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.Department of Chemistry and Center for Nanotechnology and Institute of Biomedical TechnologyChung-Yuan Christian UniversityChung-LiTaiwan

Personalised recommendations