pp 1–11 | Cite as

Natural nanofiber-based stacked porous nitrogen-doped carbon/NiFe2O4 nanohybrid nanosheets

  • Linlin LiuEmail author
  • Songqi Hu
  • Kezheng Gao
Original Research


The traditional hydrolysis/hydrothermal two-step preparation method of carbon/inorganic nanohybrid material usually exhibit the disadvantage of aggregation and precipitation. Therefore, the above method has certain difficulty in the synergistically regulation of the aggregation morphology and microscopic morphology of carbon/inorganic nanohybrid materials. In this paper, cellulose nanofiber and chitin nanofiber are used as the carrier material of inorganic nanomaterials, which can maintain the uniform and stable dispersed state during the hydrolysis of metal ions and hydrothermal treatment. The uniform inorganic nanoparticles uniformly distributed in the randomly stacked nanosheets even if the total content of metal ions increases to 6 mmol. The natural nanofibers/NiFe2O4 nanoparticles composite nanosheets with adjustable stacked pore structure can be prepared from natural nanofibers/NiFe2O4 nanoparticles composite hydrogel via unidirectional freeze-shaping. The carbonization temperature and carbonization time are more effective in synergistically regulation of the stacked porous nitrogen-doped carbon/NiFe2O4 nanohybrid nanosheets. Extending carbonization time or increasing carbonization temperature not only allows the growth of inorganic nanomaterials, but also causes damage to the nanosheets (such as broken pore and the small, wrinkled morphology of the nanohybrid nanosheets). NC/NiFe2O4-1.5/700/3 exhibits the highest gravimetric capacitance (up to 458 F g−1 at a constant current density of 0.5 A g−1).

Graphic abstract


Natural nanofibers NiFe2O4 Randomly stacked Nanohybrid nanosheets 



Financial support was kindly supplied by grants from National Natural Science Foundation of China (No. 21501154), Fundamental Research Funds for the Central Universities (No. 3102017zy007) and Natural Science Basic Research Plan in Shanxi Province of China (No. 2017JQ5068).

Supplementary material

10570_2019_2843_MOESM1_ESM.docx (15.1 mb)
Supplementary material 1 (DOCX 15500 kb)


  1. Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X (2018) Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1):56–62. CrossRefPubMedGoogle Scholar
  2. Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC (2015) Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. Acs Sustain Chem Eng 3(5):978–985. CrossRefGoogle Scholar
  3. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord Chem Rev 254(9–10):1117–1134. CrossRefGoogle Scholar
  4. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518. CrossRefGoogle Scholar
  5. Dong C, Kou T, Gao H, Peng Z, Zhang Z (2018) Eutectic-derived mesoporous Ni–Fe–O nanowire network catalyzing oxygen evolution and overall water splitting. Adv Energy Mater. CrossRefGoogle Scholar
  6. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110(3):1348–1385. CrossRefPubMedGoogle Scholar
  7. Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin. Biomacromolecules 9(1):192–198. CrossRefPubMedGoogle Scholar
  8. Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50(1):69–76. CrossRefPubMedGoogle Scholar
  9. Fu M, Qiu Z, Chen W, Lin Y, Xin H, Yang B, Fan H, Zhu C, Xu J (2017) NiFe2O4 porous nanorods/graphene composites as high-performance anode materials for lithium-ion batteries. Electrochim Acta 248:292–298. CrossRefGoogle Scholar
  10. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. CrossRefPubMedGoogle Scholar
  11. Gao K, Guo Y, Niu Q, Fang H, Zhang L, Zhang Y, Wang L, Zhou L (2018a) Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels. Cellulose 25(8):4591–4602. CrossRefGoogle Scholar
  12. Gao K, Guo Y, Niu Q, Han L, Zhang L, Zhang Y, Wang L (2018b) Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose 25(1):429–437. CrossRefGoogle Scholar
  13. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318. CrossRefGoogle Scholar
  14. Ifuku S, Nogi M, Yoshioka M, Morimoto M, Yano H, Saimoto H (2010) Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr Polym 81(1):134–139. CrossRefGoogle Scholar
  15. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. CrossRefPubMedGoogle Scholar
  16. Kang J, Duan X, Wang C, Sun H, Tan X, Tade MO, Wang S (2018) Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem Eng J 332:398–408. CrossRefGoogle Scholar
  17. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637. CrossRefGoogle Scholar
  18. Koga H, Tokunaga E, Hidaka M, Umemura Y, Saito T, Isogai A, Kitaoka T (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun 46(45):8567–8569. CrossRefGoogle Scholar
  19. Li Y, Lu M, He P, Wu Y, Wang J, Chen D, Xu H, Gao J, Yao J (2019) Bimetallic metal-organic framework-derived nanosheet-assembled nanoflower electrocatalysts for efficient oxygen evolution reaction. Chem Asian J 14(9):1590–1594. CrossRefPubMedGoogle Scholar
  20. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. CrossRefPubMedGoogle Scholar
  21. Luo J, Wang J, Liu S, Wu W, Jia T, Yang Z, Mu S, Huang Y (2019) Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors. Carbon 146:1–8. CrossRefGoogle Scholar
  22. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6):1696–1700. CrossRefPubMedGoogle Scholar
  23. Peng X, Chen J, Misewich JA, Wong SS (2009) Carbon nanotube-nanocrystal heterostructures. Chem Soc Rev 38(4):1076–1098. CrossRefPubMedGoogle Scholar
  24. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shi H, Fang Z, Zhang X, Li F, Tang Y, Zhou Y, Wu P, Yu G (2018) Double-Network nanostructured hydrogel-derived ultrafine Sn-Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett 18(5):3193–3198. CrossRefPubMedGoogle Scholar
  26. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. CrossRefGoogle Scholar
  27. Sun Y, Zeng W, Sun H, Luo S, Chen D, Chan V, Liao K (2018) Inorganic/polymer–graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor. Carbon 132:589–597. CrossRefGoogle Scholar
  28. Wang H, Dai H (2013) Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev 42(7):3088–3113. CrossRefPubMedGoogle Scholar
  29. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980. CrossRefPubMedGoogle Scholar
  30. Wang C, Chen X, Wang B, Huang M, Wang B, Jiang Y, Ruoff RS (2018a) Freeze-Casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6):5816–5825. CrossRefPubMedGoogle Scholar
  31. Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G, Liu S (2018b) mu-graphene crosslinked CsPbI 3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater. CrossRefGoogle Scholar
  32. Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283. CrossRefPubMedGoogle Scholar
  33. Wu Z, Wang J, Song M, Zhao G, Zhu Y, Fu G, Liu X (2018) Boosting oxygen reduction catalysis with N-doped carbon coated Co9S8 microtubes. ACS Appl Mater Interfaces 10(30):25415–25421. CrossRefPubMedGoogle Scholar
  34. Yang H, Liu Y, Luo S, Zhao Z, Wang X, Luo Y, Wang Z, Jin J, Ma J (2017) Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4. Acs Catal 7(8):5557–5567. CrossRefGoogle Scholar
  35. Zhao J, Li H, Li C, Zhang Q, Sun J, Wang X, Guo J, Xie L, Xie J, He B, Zhou Z, Lu C, Lu W, Zhu G, Yao Y (2018) MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45:420–431. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Science and Technology on Combustion, Internal Flow and Thermo-Structure LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations