pp 1–10 | Cite as

Fabrication of ultrastiff and strong hydrogels by in situ polymerization in layered cellulose nanofibers

  • Xianpeng YangEmail author
  • Subir K. Biswas
  • Hiroyuki Yano
  • Kentaro AbeEmail author
Original Research


Integrating high stiffness, strength, and toughness on par with those of soft tissues into synthetic hydrogels is extremely challenging. We have proposed a method to overcome this problem: in situ polymerization of a polymer matrix in layered cellulose nanofibers. In an attempt, ionically cross-linked poly(acrylamide-co-acrylic acid) is fabricated in a wet cellulose nanofiber cake. The resulting hydrogels, called ionically cross-linked nanocomposite (ICN) hydrogels, exhibit a readily adjustable elastic modulus (11.9–190.0 MPa) and high fracture strength (generally > 10 MPa), which are comparable with those of skin and ligament. The high frictional force between the cellulose nanofibers and matrix is responsible for the stiffness of ICN hydrogels; while the tough matrix and weak direct interfibrillar interactions enable good stretchability. We expect that various kinds of cellulose nanofiber/polymer nanocomposite hydrogels with excellent mechanical properties and/or other features can be fabricated by simply changing the monomers.


Nanocomposite hydrogels Cellulose nanofibers In situ polymerization Tensile properties Versatility 


Supplementary material

10570_2019_2822_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1486 kb)


  1. Abe K, Yano H (2009a) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277. CrossRefGoogle Scholar
  2. Abe K, Yano H (2009b) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023. CrossRefGoogle Scholar
  3. Abe K, Yano H (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19(6):1907–1912. CrossRefGoogle Scholar
  4. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278CrossRefGoogle Scholar
  5. Benitez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromol 14(12):4497–4506. CrossRefGoogle Scholar
  6. Chen C, Li D, Abe K, Yano H (2018) Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment. Cellulose. CrossRefGoogle Scholar
  7. De France KJ, Hoare T, Cranston ED (2017) A review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631. CrossRefGoogle Scholar
  8. Dubinskaya VA, Eng LS, Rebrow LB, Bykov VA (2007) Comparative study of the state of water in various human tissues. Bull Exp Biol Med 144(3):294–297. CrossRefPubMedGoogle Scholar
  9. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583. CrossRefGoogle Scholar
  10. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542. CrossRefPubMedGoogle Scholar
  11. Hu Y, Du Z, Deng X, Wang T, Yang Z, Zhou W et al (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49(15):5660–5668. CrossRefGoogle Scholar
  12. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466. CrossRefPubMedGoogle Scholar
  13. Kobe R, Iwamoto S, Endo T, Yoshitani K, Teramoto Y (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: mechanical property control and nanofiber orientation. Polymer 97:480–486. CrossRefGoogle Scholar
  14. Koga H, Namba N, Takahashi T, Nogi M, Nishina Y (2017) Renewable wood pulp paper reactor with hierarchical micro/nanopores for continuous-flow nanocatalysis. Chemsuschem 10(12):2560–2565. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li J, Illeperuma WRK, Suo Z, Vlassak JJ (2014) Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett 3(6):520–523. CrossRefGoogle Scholar
  16. Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27(12):2054–2059. CrossRefPubMedGoogle Scholar
  17. Lin P, Zhang T, Wang X, Yu B, Zhou F (2016) Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small 12(32):4386–4392. CrossRefPubMedGoogle Scholar
  18. Luo F, Sun TL, Nakajima T, Kurokawa T, Zhao Y, Sato K et al (2015) Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater 27(17):2722–2727. CrossRefPubMedGoogle Scholar
  19. Mahfoudhi N, Boufi S (2016) Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23(6):3691–3701. CrossRefGoogle Scholar
  20. Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53(1):122CrossRefGoogle Scholar
  21. Mredha MTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP (2018) A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv Mater 30(9):1704937. CrossRefGoogle Scholar
  22. Nascimento DM, Nunes YL, Figueirêdo MCB, de Azeredo HMC, Aouada FA, Feitosa JPA et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448. CrossRefGoogle Scholar
  23. Oyen ML (2013) Mechanical characterisation of hydrogel materials. Int Mater Rev 59(1):44–59. CrossRefGoogle Scholar
  24. Rauner N, Meuris M, Zoric M, Tiller JC (2017) Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 543(7645):407–410. CrossRefPubMedGoogle Scholar
  25. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064. CrossRefPubMedGoogle Scholar
  26. Wang W, Zhang Y, Liu W (2017) Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog Polym Sci 71:1–25. CrossRefGoogle Scholar
  27. Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Phil Mag 84(21):2167–2186. CrossRefGoogle Scholar
  28. Xu L, Zhao X, Xu C, Kotov NA (2018) Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv Mater 30(1):1703343. CrossRefGoogle Scholar
  29. Yang XP, Abe K, Biswas SK, Yano H (2018) Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl alcohol) networks. Cellulose 25(11):6571–6580. CrossRefGoogle Scholar
  30. Yang XP, Biswas SK, Yano H, Abe K (2019) Stiffened nanocomposite hydrogels by using modified cellulose nanofibers via plug flow reactor method. ACS Sustain Chem Eng 7(10):9092–9096. CrossRefGoogle Scholar
  31. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356(6337):eaaf3627. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T et al (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28(24):4884–4890. CrossRefPubMedGoogle Scholar
  33. Zhao X (2017) Designing toughness and strength for soft materials. Proc Natl Acad Sci 114(31):8138–8140CrossRefGoogle Scholar
  34. Zheng SY, Ding H, Qian J, Yin J, Wu ZL, Song Y et al (2016) Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 49(24):9637–9646. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan

Personalised recommendations