Advertisement

Cellulose

, Volume 27, Issue 1, pp 369–383 | Cite as

Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications

  • Fazli Wahid
  • He Bai
  • Feng-Ping Wang
  • Yan-Yan Xie
  • Yan-Wen Zhang
  • Li-Qiang Chu
  • Shi-Ru Jia
  • Cheng ZhongEmail author
Original Research
  • 137 Downloads

Abstract

Bacterial cellulose (BC) has numerous unique properties; however, the lack of antibacterial properties has restricted its biomedical applications. To resolve this problem, we have developed BC/polyethyleneimine (PEI)-based antibacterial hydrogels by a facile two-step-one-pot method using epichlorohydrin (ECH) as a coupling agent. ECH was added to BC solution and homogenized, followed by cross-linking with different content of PEI. The prepared hydrogels showed thermal stability, moldability, and PEI-content dependent mechanical properties. Furthermore, the antibacterial properties of the prepared hydrogels were investigated against S. aureus and E. coli by agar well diffusion method and colony forming unit method. All hydrogels containing PEI showed antibacterial properties dependent on PEI content. The hydrogels containing PEI ≥ 12.88 mg/mL showed more than 99% antibacterial activity against both strains. We believe that the prepared hydrogels can find potential applications in biomedical fields.

Graphic abstract

Keywords

Bacterial cellulose Polyethyleneimine Hydrogels Antibacterial activity 

Notes

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21978219, 21576212), Natural Science Foundation of Tianjin (Nos. 17YFZCSF01120, 18PTSYJC00140).

Supplementary material

10570_2019_2806_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2036 kb)

References

  1. Arya AD et al (2016) Gelatin Methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and chemoresponse in vitro. ACS Appl Mater Interfaces 8:22005–22017CrossRefGoogle Scholar
  2. Azevedo MM, Ramalho P, Silva AP, Teixeira-Santos R, Pina-Vaz C, Rodrigues AG (2014) Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. J Med Microbiol 63:1167–1173CrossRefGoogle Scholar
  3. Cacicedo ML et al (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180.  https://doi.org/10.1016/j.biortech.2016.02.071 CrossRefPubMedGoogle Scholar
  4. de Oliveira Barud HG et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420.  https://doi.org/10.1016/j.carbpol.2016.07.059 CrossRefPubMedGoogle Scholar
  5. Edwards SL, Church JS, Alexander DL, Russell SJ, Ingham E, Ramshaw JA, Werkmeister JA (2011) Modeling tissue growth within nonwoven scaffolds pores. Tissue Eng Part C Methods 17:123–130CrossRefGoogle Scholar
  6. Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148–155.  https://doi.org/10.1016/j.carbpol.2015.04.039 CrossRefPubMedGoogle Scholar
  7. Fan Z, Po KHL, Wong KK, Chen S, Lau SP (2018) Polyethylenimine-modified graphene oxide as a novel antibacterial agent and its synergistic effect with daptomycin for methicillin-resistant Staphylococcus aureus. ACS Appl Nano Mater 1:1811–1818.  https://doi.org/10.1021/acsanm.8b00219 CrossRefGoogle Scholar
  8. Fernandes SCM et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297.  https://doi.org/10.1021/am400338n CrossRefPubMedGoogle Scholar
  9. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  10. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442.  https://doi.org/10.1016/j.carbpol.2012.10.071 CrossRefPubMedGoogle Scholar
  11. Ge H, Huang H, Xu M, Chen Q (2016) Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 23:2527–2537.  https://doi.org/10.1007/s10570-016-0973-3 CrossRefGoogle Scholar
  12. Guo B, Finnewistrand A, Albertsson AC (2011) Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromol 12:2601–2609CrossRefGoogle Scholar
  13. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460.  https://doi.org/10.1016/j.carbpol.2018.06.114 CrossRefPubMedGoogle Scholar
  14. Helander IM, Latva-Kala K, Lounatmaa K (1998) Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology 144:385–390.  https://doi.org/10.1099/00221287-144-2-385 CrossRefPubMedGoogle Scholar
  15. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060.  https://doi.org/10.1016/j.carbpol.2013.09.102 CrossRefPubMedGoogle Scholar
  16. Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 41:4755–4767CrossRefGoogle Scholar
  17. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232.  https://doi.org/10.1016/j.carbpol.2010.04.074 CrossRefGoogle Scholar
  18. Jayaramudu T, Ko H-U, Zhai L, Li Y, Kim J (2017) Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior. Soft Mater 15:64–72.  https://doi.org/10.1080/1539445x.2016.1246458 CrossRefGoogle Scholar
  19. Ji C, Khademhosseini A, Dehghani F (2011) Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 32:9719–9729CrossRefGoogle Scholar
  20. Jung H-I et al (2010) Production and characterization of cellulose by acetobacter sp V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162:486–497.  https://doi.org/10.1007/s12010-009-8759-9 CrossRefPubMedGoogle Scholar
  21. Lai JY, Li YT (2010) Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromol 11:1387–1397CrossRefGoogle Scholar
  22. Li M, Jiang X, Wang D, Xu Z, Yang M (2019) In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application. Colloid Surf B 177:370–376.  https://doi.org/10.1016/j.colsurfb.2019.02.029 CrossRefGoogle Scholar
  23. Lin S-P, Loira Calvar I, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219.  https://doi.org/10.1007/s10570-013-9994-3 CrossRefGoogle Scholar
  24. Liu Z, Zhang Z, Zhou C, Jiao Y (2010) Hydrophobic modifications of cationic polymers for gene delivery. Prog Polym Sci 35:1144–1162CrossRefGoogle Scholar
  25. Liu C et al (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33:3604–3613.  https://doi.org/10.1016/j.biomaterials.2012.01.052 CrossRefPubMedGoogle Scholar
  26. Melone L, Rossi B, Pastori N, Panzeri W, Mele A, Punta C (2015) TEMPO-oxidized cellulose cross-linked with branched polyethyleneimine: nanostructured adsorbent sponges for water remediation. Chempluschem 80:1408–1415.  https://doi.org/10.1002/cplu.201500145 CrossRefGoogle Scholar
  27. Naahidi S et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35:530–544.  https://doi.org/10.1016/j.biotechadv.2017.05.006 CrossRefPubMedGoogle Scholar
  28. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5:810–823.  https://doi.org/10.3390/membranes5040810 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ng VW, Chan JM, Sardon H, Ono RJ, Garcia JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Del Rev 78:46–62.  https://doi.org/10.1016/j.addr.2014.10.028 CrossRefGoogle Scholar
  30. O’Connor NA, Abugharbieh A, Yasmeen F, Buabeng E, Mathew S, Samaroo D, Cheng H-P (2015) The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int J Biol Macromol 72:88–93.  https://doi.org/10.1016/j.ijbiomac.2014.08.003 CrossRefPubMedGoogle Scholar
  31. Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639.  https://doi.org/10.1021/acsomega.7b00442 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pella MCG, Lima-Tenorio MK, Neto ETT, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245.  https://doi.org/10.1016/j.carbpol.2018.05.033 CrossRefPubMedGoogle Scholar
  33. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677.  https://doi.org/10.1021/bm034519+ CrossRefGoogle Scholar
  34. Sahiner N, Sagbas S, Sahiner M, Ayyala RS (2017) Polyethyleneimine modified poly(Hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydr Polym 159:29–38.  https://doi.org/10.1016/j.carbpol.2016.12.024 CrossRefPubMedGoogle Scholar
  35. Santos SM et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181.  https://doi.org/10.1016/j.carbpol.2014.03.064 CrossRefPubMedGoogle Scholar
  36. Saska S, Teixeira LN, de Oliveira PT, Gaspar AMM, Ribeiro SJL, Messaddeq Y, Marchetto R (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22:22102–22112.  https://doi.org/10.1039/c2jm33762b CrossRefGoogle Scholar
  37. Shen W, Chen S, Shi S, Li X, Zhang X, Hu W, Wang H (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114.  https://doi.org/10.1016/j.carbpol.2008.07.006 CrossRefGoogle Scholar
  38. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545.  https://doi.org/10.1016/j.foodhyd.2013.07.012 CrossRefGoogle Scholar
  39. Sulaeva I, Henniges U, Rosenau T, Potthast A (2015) Bacterial cellulose as a material for wound treatment: properties and modifications. Rev Biotechnol Adv 33:1547–1571.  https://doi.org/10.1016/j.biotechadv.2015.07.009 CrossRefGoogle Scholar
  40. Teow YH, Kam LM, Mohammad AW (2018) Synthesis of cellulose hydrogel for copper (II) ions adsorption. J Environ Chem Eng 6:4588–4597.  https://doi.org/10.1016/j.jece.2018.07.010 CrossRefGoogle Scholar
  41. Terech P, Dourdain S, Maitra U, Bhat S (2009) Structure and Rheology of cationic molecular hydrogels of quinuclidine grafted bile salts influence of the ionic strength and counter-ion type. J Phys Chem B 113:4619–4630.  https://doi.org/10.1021/jp809336g CrossRefPubMedGoogle Scholar
  42. Udoetok IA, Dimmick RM, Wilson LD, Headley JV (2016) Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr Polym 136:329–340.  https://doi.org/10.1016/j.carbpol.2015.09.032 CrossRefPubMedGoogle Scholar
  43. Wahid F, Wang H-S, Zhong C, Chu L-Q (2017a) Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr Polym 165:455–461.  https://doi.org/10.1016/j.carbpol.2017.02.085 CrossRefPubMedGoogle Scholar
  44. Wahid F, Zhong C, Wang H-S, Hu X-H, Chu L-Q (2017b) Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 9:636CrossRefGoogle Scholar
  45. Wang J, Lu X, Pui Fai N, Lee KI, Fei B, Xin JH, Wu J-Y (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38.  https://doi.org/10.1016/j.jcis.2014.10.035 CrossRefPubMedGoogle Scholar
  46. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538.  https://doi.org/10.1016/j.carbpol.2010.12.017 CrossRefGoogle Scholar
  47. Yang XN et al (2016) Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr Polym 136:1152–1160.  https://doi.org/10.1016/j.carbpol.2015.10.020 CrossRefPubMedGoogle Scholar
  48. Ye D et al (2017) Deformation drives alignment of nanofibers in framework for inducing anisotropic cellulose hydrogels with high toughness. ACS Appl Mater Interfaces 9:43154–43162CrossRefGoogle Scholar
  49. Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanopart Res 12:591–603.  https://doi.org/10.1007/s11051-009-9628-8 CrossRefGoogle Scholar
  50. Zhao J, Lu C, He X, Zhang X, Zhang W, Zhang X (2015) Polyethyleneimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. Acs Appl Mater Interfaces 7:2607–2615CrossRefGoogle Scholar
  51. Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287CrossRefGoogle Scholar
  52. Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 97:6189–6199.  https://doi.org/10.1007/s00253-013-4908-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Nutrition and SafetyTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education)Tianjin University of Science and TechnologyTianjinPeople’s Republic of China
  3. 3.College of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  4. 4.China Offshore Environmental Service Ltd.TianjinPeople’s Republic of China

Personalised recommendations