, Volume 27, Issue 1, pp 113–126 | Cite as

Cellulosic material obtained from Antarctic algae biomass

  • Oscar G. Paniz
  • Claudio M. P. Pereira
  • Bruna S. Pacheco
  • Silvana I. Wolke
  • Guilherme K. Maron
  • Andrés Mansilla
  • Pio Colepicolo
  • Marcelo O. Orlandi
  • Alice G. Osorio
  • Neftali L. V. CarreñoEmail author
Original Research


Algae biomass is a raw material widely used by many industrial sectors, such as food production, pharmaceuticals, cosmetics, fertilizers, biofuels, and many others. Its usage is mainly due to the phycocolloids content, such as alginates, carrageenans, agar, etc. One of the polysaccharides present in this biomass, and still little explored is cellulose, an important resource with several technological applications, for example: production of nanocellulose, ultralightweight structures, drug delivery, tissue engineering, wound dressings, among others. Thus, we used the Antarctic algae Cystosphaera jacquinottii as raw material for the production of a cellulosic material combining alkaline treatment, bleaching, and freeze-drying. Fourier-transform infrared spectroscopy results revealed that the methodology employed was effective to obtain cellulose. X-ray diffraction analysis showed that the material obtained had crystallinity above 70%. Scanning electron microscopy analyses showed a highly porous morphology, consisting of cellulose nanofibers with a diameter about 32 nm.

Graphic abstract


Cellulose Algae biomass Cystosphaera jacquinottii 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, FAPERGS/PqG 2017 (17/2551-0001 157-0), Capes (PGCI-99999.002378/2015-09), (88887.125421/2016-00), and Forensic National Institute of Science and Technology (CNPq - Grant number 465450/2014-8). The authors would like to thank the CNANO—UFRGS for Solid State CP-MAS 13C-NMR for her invaluable technical support, as well to Electron microscopy facilities were provided by LMA-IQ-UNESP.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict to interest.


  1. Akhter M, Majumdar RD, Fortier-McGill B et al (2016) Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Anal Bioanal Chem 408:4357–4370. CrossRefPubMedGoogle Scholar
  2. Ankisetty S, Nandiraju S, Win H et al (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67:1295–1302. CrossRefPubMedGoogle Scholar
  3. Araki J (2013) Electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125–4141. CrossRefGoogle Scholar
  4. Arnold AA, Genard B, Zito F et al (2015) Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim Biophys Acta Biomembr 1848:369–377. CrossRefGoogle Scholar
  5. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barahona T, Encinas MV, Imarai M et al (2014) Bioactive polysaccharides from marine algae. Bioact Carbohydr Diet Fibre 4:125–138. CrossRefGoogle Scholar
  7. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101. CrossRefGoogle Scholar
  8. Basu P (2018) Definition of biomass. In: Basu P (ed) Biomass gasification, pyrolysis and torrefaction, 3 edn. Elsevier, pp 497–499Google Scholar
  9. Bogolitsyn KG, Ovchinnikov DV, Kaplitsin PA et al (2017) Isolation and structural characterization of cellulose from arctic brown algae. Chem Nat Compd 53:533–537. CrossRefGoogle Scholar
  10. Bouzidi N, Daghbouche Y, El Hattab M et al (2008) Determination of total sterols in brown algae by Fourier transform infrared spectroscopy. Anal Chim Acta 616:185–189. CrossRefPubMedGoogle Scholar
  11. Cengiz A, Kaya M, Bayramgil NP (2017) Flexural stress enhancement of concrete by incorporation of algal cellulose nanofibers. Constr Build Mater 149:289–295. CrossRefGoogle Scholar
  12. Chen J, Spear SK, Huddleston JG et al (2004) Application of poly(ethylene glycol)-based aqueous biphasic systems as reaction and reactive extraction media. Ind Eng Chem Res 43:5358–5364. CrossRefGoogle Scholar
  13. Chen X, Yuan F, Zhang H et al (2016a) Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J Mater Sci 51:5573–5588. CrossRefGoogle Scholar
  14. Chen YW, Lee HV, Juan JC, Phang S-M (2016b) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219. CrossRefPubMedGoogle Scholar
  15. Chevolot L, Foucault A, Chaubet F et al (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 319:154–165. CrossRefPubMedGoogle Scholar
  16. Chun Y, Ko YG, Do T et al (2018) Electrorheological properties of algae dispersed suspension: new application of harmful algae. Colloids Surf A Physicochem Eng Asp 539:354–363. CrossRefGoogle Scholar
  17. Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230. CrossRefGoogle Scholar
  18. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. CrossRefGoogle Scholar
  19. El Achaby M, El Miri N, Hannache H et al (2018a) Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int J Biol Macromol 117:592–600. CrossRefPubMedGoogle Scholar
  20. El Achaby M, Kassab Z, Aboulkas A et al (2018b) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691. CrossRefPubMedGoogle Scholar
  21. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859. CrossRefGoogle Scholar
  22. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier Transform Mater Anal. CrossRefGoogle Scholar
  23. Flyn JH (2002) Polymer degradation. In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry, vol 3, 1st edn. Elsevier, Amsterdam, pp 557–652Google Scholar
  24. Fortunati E, Puglia D, Monti M et al (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21:319–328. CrossRefGoogle Scholar
  25. Gao H, Duan B, Lu A et al (2018) Fabrication of cellulose nanofibers from waste brown algae and their potential application as milk thickeners. Food Hydrocoll 79:473–481. CrossRefGoogle Scholar
  26. Gómez I, Westermeier R (1995) Energy contents and organic constituents in Antarctic and south Chilean marine brown algae. Polar Biol 15:597–602. CrossRefGoogle Scholar
  27. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520. CrossRefGoogle Scholar
  28. Gupta V, Thakur RS, Reddy CRK, Jha B (2013) Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv 3:7037. CrossRefGoogle Scholar
  29. Hermans JJ (1963) Viscosity and sedimentation in dilute solutions of cellulosic macromolecules. J Polym Sci Part C Polym Symp 2:117–128. CrossRefGoogle Scholar
  30. Houghton RA (2008) Biomass. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology, 2nd edn. Elsevier, Amsterdam, pp 448–453CrossRefGoogle Scholar
  31. Hua K, Strømme M, Mihranyan A, Ferraz N (2015) Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 22:3673–3688. CrossRefGoogle Scholar
  32. Jackson MJ, Line MA (1997) Organic composition of a pulp and paper mill sludge determined by FTIR, 13C CP MAS NMR, and chemical extraction techniques. J Agric Food Chem 45:2354–2358. CrossRefGoogle Scholar
  33. Kačuráková M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303. CrossRefGoogle Scholar
  34. Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63. CrossRefPubMedGoogle Scholar
  35. Kiefer E, Sigg L, Schosseler P (1997) Chemical and spectroscopic characterization of algae surfaces. Environ Sci Technol 31:759–764. CrossRefGoogle Scholar
  36. Ko SW, Soriano JPE, Unnithan AR et al (2018) Development of bioactive cellulose nanocrystals derived from dominant cellulose polymorphs I and II from Capsosiphon Fulvescens for biomedical applications. Int J Biol Macromol 110:531–539. CrossRefPubMedGoogle Scholar
  37. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25. CrossRefGoogle Scholar
  38. Le Bras D, Strømme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917. CrossRefPubMedGoogle Scholar
  39. Liu Z, Li X, Xie W, Deng H (2017) Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohydr Polym 173:353–359. CrossRefPubMedGoogle Scholar
  40. Maciel GE, O’Donnell DJ, Ackerman JJH et al (1981) A 13C NMR study of four lignins in the solid and solution. Macromol Chem Phys. CrossRefGoogle Scholar
  41. Martins RM, Nedel F, Guimarães VBS et al (2018) Macroalgae extracts from antarctica have antimicrobial and anticancer potential. Front Microbiol 9:1–10. CrossRefGoogle Scholar
  42. Morya VK, Kim J, Kim E (2012) Algal fucoidan: structural and size-dependent bioactivities and their perspectives. Appl Microbiol Biotechnol 93:71–82. CrossRefPubMedGoogle Scholar
  43. Nascimento P, Marim R, Carvalho G, Mali S (2016) Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Mater Res 19:167–174. CrossRefGoogle Scholar
  44. Nascimento DM, Nunes YL, Figueirêdo MCB et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428–2448. CrossRefGoogle Scholar
  45. Oh SY, Yoo DI, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. CrossRefPubMedGoogle Scholar
  46. Ovalle-Serrano SA, Gómez FN, Blanco-Tirado C, Combariza MY (2018) Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydr Polym 189:169–177. CrossRefPubMedGoogle Scholar
  47. Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432. CrossRefGoogle Scholar
  48. Pereira CMP, Nunes CFP, Zambotti-Villela L et al (2017) Extraction of sterols in brown macroalgae from Antarctica and their identification by liquid chromatography coupled with tandem mass spectrometry. J Appl Phycol 29:751–757. CrossRefGoogle Scholar
  49. Robles E, Fernández-Rodríguez J, Barbosa AM et al (2018) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr Polym 183:294–302. CrossRefPubMedGoogle Scholar
  50. Robles-García MÁ, Del-Toro-Sánchez CL, Márquez-Ríos E et al (2018) Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization. Carbohydr Polym 192:69–74. CrossRefPubMedGoogle Scholar
  51. Samui AB, Sundararajan S, Kumar V, Kulkarni PS (2015) Cellulose modification for imparting smartness: thermoregulation, self-cleaning, solar cell and electroactuation. In: Mondal IH (ed) Cellulose and cellulose composites, modification, characterization and applications, 1st edn. Nova Science Publishers, Hauppauge, pp 3–33Google Scholar
  52. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. CrossRefGoogle Scholar
  53. Spiridon I, Darie-Nita RN, Hitruc GE et al (2016) New opportunities to valorize biomass wastes into green materials. J Clean Prod 133:235–242. CrossRefGoogle Scholar
  54. Tappi (2016) T 211 om-16—Ash in wood, pulp, paper and paperboard: combustion at 525 degrees Celsius. TAPPI Stand. MethodsGoogle Scholar
  55. Tappi (2008) T 207 cm-08—Water solubility of wood and pulp. TAPPI Stand. MethodsGoogle Scholar
  56. Tappi (1998) T 9 wd-75—Holocellulose in Wood. TAPPI Stand. MethodsGoogle Scholar
  57. Tappi (2017) T 204 cm-17—Solvent extractives of wood and pulp. TAPPI Stand. MethodsGoogle Scholar
  58. Tappi (2015) T 222 om-15—Acid-insoluble lignin in wood and pulp. TAPPI Stand. MethodsGoogle Scholar
  59. Tappi (2009) T 203 cm-09 - Alpha-, beta- and gamma-cellulose in pulp. 5–9Google Scholar
  60. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318. CrossRefGoogle Scholar
  61. Wang H-MD, Li X-C, Lee D-J, Chang J-S (2017) Potential biomedical applications of marine algae. Bioresour Technol 244:1407–1415. CrossRefPubMedGoogle Scholar
  62. Wiercigroch E, Szafraniec E, Czamara K et al (2017) Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta Part A Mol Biomol Spectrosc 185:317–335. CrossRefGoogle Scholar
  63. Yan Z, Chen S, Wang H et al (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80. CrossRefPubMedGoogle Scholar
  64. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. CrossRefGoogle Scholar
  65. Zhong L, Fu S, Peng X et al (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym 90:644–649. CrossRefPubMedGoogle Scholar
  66. Zhukov AN, Baturenko DY, Chernoberezhskii YM, Lorentsson AV (2003) Conductivity and electrokinetic potential of microcrystalline cellulose particles in aqueous HCL and NaOH solutions. Colloid J Russ Acad Sci Kolloidn Zhurnal 65:310–313. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Oscar G. Paniz
    • 1
  • Claudio M. P. Pereira
    • 1
    • 2
  • Bruna S. Pacheco
    • 2
  • Silvana I. Wolke
    • 3
  • Guilherme K. Maron
    • 1
  • Andrés Mansilla
    • 4
  • Pio Colepicolo
    • 5
  • Marcelo O. Orlandi
    • 6
  • Alice G. Osorio
    • 1
  • Neftali L. V. Carreño
    • 1
    Email author
  1. 1.Graduate Program in Materials Science and Engineering, CDTecFederal University of PelotasPelotasBrazil
  2. 2.Laboratory of Lipidomic and Bio-OrganicFederal University of PelotasCapão do LeãoBrazil
  3. 3.Institute of ChemistryFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratorio de Macroalgas Antárticas y SubantárticasUniversity of MagallanesPunta ArenasChile
  5. 5.Biochemistry Department, Chemistry InstituteSão Paulo UniversitySão PauloBrazil
  6. 6.Interdisciplinary Laboratory of Ceramics, IQSão Paulo State UniversityAraraquaraBrazil

Personalised recommendations