Advertisement

Cellulose

, Volume 27, Issue 1, pp 205–214 | Cite as

Fast and facile size selection processing for high quality cellulose nanowhiskers

  • Rafael A. Araujo
  • Adley F. Rubira
  • Heveline D. M. FollmannEmail author
  • Rafael SilvaEmail author
Original Research
  • 59 Downloads

Abstract

Cellulose nanowhiskers (CNWs) are appealing natural materials with a broad range of applications in nanoscience. The hydrolysis of the amorphous regions is a kinetic-controlled process in which the natural fibers undergo degradation at strong acidic conditions. Therefore, as-prepared samples of CNWs are constituted of particles with broad varieties of length and diameter. In fact, the majority of cellulose particles are microcrystalline. For more precise and specific applications, a further purification process of as-synthesized CNWs is required. This purification process must lead to more uniform nanoparticles. Herein, we report a purification protocol based exclusively on successive centrifugation steps. Cotton fibers were used as a cellulose source and the four-step centrifugation protocol applied for purification. Dynamic light scattering and transmission electron microscope techniques were used to verify the changes in the selection process. The initial sample was composed of particles between 50 and 2000 nm. After the four-step purification process, more than 90% of purified particles size ranged from 150 to 400 nm with a net yield of 54%.

Graphic abstract

Keywords

Cellulose nanowhiskers Natural nanomaterial Nano-template Size exclusion Dynamic light scattering 

Notes

Acknowledgments

This research had financial support given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Fundação Araucária (Brazil).

References

  1. Akerholm M, Hinterstoisser B, Salmen L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohyd Res 339(3):569–578Google Scholar
  2. Al Samri MT, Silva R, Almarzooqi S, Albawardi A, Othman ARD, Al Hanjeri R, Asefa T (2013) Lung toxicities of core-shell nanoparticles composed of carbon, cobalt, and silica. Int J Nanomed 8:1223–1244Google Scholar
  3. Araujo RA, Rubira AF, Asefa T, Silva R (2016) Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER). Carbohyd Polym 137:719–725Google Scholar
  4. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromol 10(4):712–716Google Scholar
  5. Cellet TSP, Pereira GM, Muniz EC, Silva R, Rubira AF (2015) Hydroxyapatite nanowhiskers embedded in chondroitin sulfate microspheres as colon targeted drug delivery systems. J Mater Chem B 3(33):6837–6846Google Scholar
  6. Chen Y, Liu CH, Chang PR, Cao XD, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76(4):607–615Google Scholar
  7. Chen GY, Yu HY, Zhang CH, Zhou Y, Yao JM (2016) A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses. J Nanoparticle Res 18(2):48Google Scholar
  8. Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2(8):3403–3409Google Scholar
  9. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8Google Scholar
  10. Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromol 11(9):2498–2504Google Scholar
  11. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315Google Scholar
  12. Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohyd Polym 88(4):1184–1188Google Scholar
  13. Fernandes DM, Hechenleitner AAW, Silva MF, Lima MK, Bittencourt PRS, Silva R, Pineda EAG (2009) Preparation and characterization of NiO, Fe2O3, Ni0.04Zn0.96O and Fe0.03Zn0.97O nanoparticles. Mater Chem Phys 118(2–3):447–452Google Scholar
  14. Follmann HDM, Naves AF, Martins AF, Felix O, Decher G, Muniz EC, Silva R (2016) Advanced fibroblast proliferation inhibition for biocompatible coating by electrostatic layer-by-layer assemblies of heparin and chitosan derivatives. J Colloid Interface Sci 474:9–17PubMedGoogle Scholar
  15. Fragal VH, Silva R, Cellet TP, Pereira GM, Kunita MH, Muniz EC, Rubira AF (2013) Hosted formation of PbS crystals on polyethylene modified surface. J Braz Chem Soc 24(2):336–343Google Scholar
  16. Fragal E, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC, Rubira AF (2016a) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohyd Polym 152:734–746Google Scholar
  17. Fragal VH, Cellet TSP, Fragal EH, Pereira GM, Garcia FP, Nakamura CV, Silva R (2016b) Controlling cell growth with tailorable 2D nanoholes arrays. J Colloid Interface Sci 466:150–161PubMedGoogle Scholar
  18. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896Google Scholar
  19. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588Google Scholar
  20. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS (2013) Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Mater Lett 113:87–89Google Scholar
  21. Heveline DMF, Alliny FN, Rafael AA, Viktor D, Xiaoxi H, Tewodros A, Osvaldo NO (2017) Hybrid materials and nanocomposites as multifunctional biomaterials. Curr Pharm Des 23(26):3794–3813Google Scholar
  22. Jain RN, Huang XX, Das S, Silva R, Ivanova V, Minko T, Asefa T (2014) Silica-based nanoporous materials. Z Anorg Allg Chem 640(3–4):616–623Google Scholar
  23. Khandelwal M, Windle AH (2013) Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer 54(19):5199–5206Google Scholar
  24. Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27Google Scholar
  25. Luduena LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers Polym 14(7):1118–1127Google Scholar
  26. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. Appl Crystallogr 41(2):466–470Google Scholar
  27. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedGoogle Scholar
  28. Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JPA, Rosa MDF (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463Google Scholar
  29. Ni H, Zeng S, Wu J, Cheng X, Luo T, Wang W, Chen Y (2012) Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. Bio-Med Mater Eng 22:121–127Google Scholar
  30. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082PubMedGoogle Scholar
  31. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340(15):2376–2391Google Scholar
  32. Pachuau LS (2015) A mini review on plant-based nanocellulose: production, sources, modifications and its potential in drug delivery applications. Mini-Rev Med Chem 15(7):543–552PubMedGoogle Scholar
  33. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92Google Scholar
  34. Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):03311Google Scholar
  35. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd Polym 83(1):122–129Google Scholar
  36. Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422-U246Google Scholar
  37. Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009a) Applications of lignocellulosic fibers in polymer chemistry and in compositES. Quim Nova 32(3):661–671Google Scholar
  38. Silva R, Pereira GM, Muniz EC, Rubira AF (2009b) Calcium carbonate crystallization on a polyethylene surface containing ultrathin layers of hydrophilic polymers. Cryst Growth Des 9(7):3307–3312Google Scholar
  39. Silva R, Al-Sharab J, Asefa T (2012) Edge-plane-rich nitrogen-doped carbon nanoneedles and efficient metal-free electrocatalysts. Angewandte Chemie-Int Edition 51(29):7171–7175Google Scholar
  40. Silva R, Pereira GM, Voiry D, Chhowalla M, Asefa T (2015) Co3O4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. Rsc Adv 5(61):49385–49391Google Scholar
  41. Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, Rubira AF (2018a) Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J Colloid Interface Sci 531:705–715PubMedGoogle Scholar
  42. Spagnol C, Fragal EH, Witt MA, Follmann HDM, Silva R, Rubira AF (2018b) Mechanically improved polyvinyl alcohol-composite films using modified cellulose nanowhiskers as nano-reinforcement. Carbohyd Polym 191:25–34Google Scholar
  43. Tehrani AD, Basiryan A (2015) Dendronization of cellulose nanowhisker with cationic hyperbranched dendritic polyamidoamine. Carbohyd Polym 120:46–52Google Scholar
  44. Tomaz VA, Rubira AF, Silva R (2016) Solid-state polymerization of EDTA and ethylenediamine as one-step approach to monodisperse hyperbranched polyamides. Rsc Adv 6(47):40717–40723Google Scholar
  45. Tsuboi A, Norisuye T, Teramoto A (1996) Chain stiffness and excluded-volume effects in dilute polymer solutions: cellulose tris (3,5-dimethylphenyl)carbamate. Macromolecules 29(10):3597–3602Google Scholar
  46. Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151PubMedGoogle Scholar
  47. Wei D, Liu Q, Liu Z, Liu J, Zheng X, Pei Y, Tang K (2019) Modified nano microfibrillated cellulose/carboxymethyl chitosan composite hydrogel with giant network structure and quick gelation formability. Int J Biol Macromol 135:561–568PubMedGoogle Scholar
  48. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohyd Res 312(3):123–129Google Scholar
  49. Xu J, Tan X, Chen L, Li X, Xie F (2019) Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohyd Polym 215:151–159Google Scholar
  50. Yin J, Yuan T, Lu Y, Song K, Li H, Zhao G, Yin Y (2017) Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls. Carbohyd Polym 155:163–172Google Scholar
  51. Zheng YY, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohyd Res 405:23–32Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations