Advertisement

Cellulose

pp 1–20 | Cite as

Synthesis of nanocrystalline cellulose via ammonium persulfate-assisted swelling followed by oxidation and their chiral self-assembly

  • Hong Wang
  • Manoj Pudukudy
  • Yonghao Ni
  • Yunfei Zhi
  • Heng Zhang
  • Zhenquan Wang
  • Qingming JiaEmail author
  • Shaoyun ShanEmail author
Original Research
  • 52 Downloads

Abstract

A single-step ammonium persulfate (APS)-assisted swelling, followed by oxidation, can prepare nanocrystalline cellulose (NCC) from cotton linters. The APS-swelling is the critical step in the process, and the effects of swelling time, temperature and solid–liquid ratios were thoroughly investigated. The optimal conditions for NCC preparation were a swelling time of 3.0 h, a swelling temperature of 25 °C, and a solid–liquid ratio of 1:50. Upon heating at 60 °C, the persulfate enters the amorphous region of the cellulose and produces active SO4·− and H2O2, which effectively attack the two-phase structure of cellulose and oxidize the –OH group at the C-6 position. The swelling temperature of 25 °C plays a crucial role in breaking the hydrogen bonds between the molecular chains of cellulose. It permits the preparation of NCC with a high yield and crystallinity index. The crystalline structure of cellulose Iβ did not change after APS swelling and oxidation. The atomic force microscopic analysis confirmed the formation of spindle-shaped particles with a helical structure. Upon natural evaporation of the NCC suspension, brittle films were obtained, which exhibited a left-hand layered structure and high iridescence with a fingerprint-texture. These materials can be applied as strength additives and chiral templates.

Graphic abstract

Keywords

One-step synthesis Nanocrystalline cellulose Ammonium persulfate Swelling Oxidation Spindle-shaped helical structure Chiral self-assembly 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 21566014 and 21766016), China Postdoctoral Science Foundation (Grant No. 2019M653845XB) and Postdoctoral Research Funding of Kunming University of Science and Technology (Grant No. 10988880). H. Wang special thanks to Prof. Zhuang, KMUST for providing the facilities for POM measurements. M. Pudukudy gratefully acknowledges the financial support fromYunnan Province Postdoctoral Research Funding and Yunnan Province Postdoctoral Orientation Training Funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10570_2019_2789_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2818 kb)

References

  1. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794CrossRefGoogle Scholar
  2. Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed 51:2008–2010CrossRefGoogle Scholar
  3. Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018CrossRefPubMedPubMedCentralGoogle Scholar
  4. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665CrossRefGoogle Scholar
  5. Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 4:52289–52298CrossRefGoogle Scholar
  6. Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577CrossRefGoogle Scholar
  7. Cellulose In: Ullmann’s Encyclopedia of Industrial ChemistryGoogle Scholar
  8. Chen W, Li Q, Cao J, Liu Y, Li J, Zhang J, Luo S, Yu H (2015) Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr Polym 117:950–956CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258CrossRefGoogle Scholar
  10. Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8:973–978CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chindawong C, Johannsmann D (2014) An anisotropic ink based on crystalline nanocellulose: potential applications in security printing. J Appl Polym Sci 131(22):41063CrossRefGoogle Scholar
  12. Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRefGoogle Scholar
  13. Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part II: free floating cotton and wood fibres in NaOH–water–additives systems. Macromol Symp 244:19–30CrossRefGoogle Scholar
  14. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15(7):2327–2346CrossRefGoogle Scholar
  15. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duchemin BJC, Mathew AP, Oksman K (2009) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos A Appl Sci Manuf 40:2031–2037CrossRefGoogle Scholar
  17. Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S, Chen G, Li T, Munday J, Huang J, Hu L (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  19. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001CrossRefGoogle Scholar
  20. Guidetti G, Atifi S, Vignolini S, Hamad WY (2016) Flexible photonic cellulose nanocrystal films. Adv Mater 28:10042–10047CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402Google Scholar
  22. Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromol 14:1529–1540CrossRefGoogle Scholar
  23. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly Transparent and Flexible Nanopaper Transistors. ACS Nano 7(3):2106–2113CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763CrossRefPubMedPubMedCentralGoogle Scholar
  25. Immergut E, Ranby B, Mark H (1953) Recent work on molecular weight of cellulose. Ind Eng Chem 45:2483–2490CrossRefGoogle Scholar
  26. Islam MS, Kao N, Bhattacharya SN, Gupta R, Choi HJ (2018) Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin J Chem Eng 26:465–476CrossRefGoogle Scholar
  27. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  28. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330Google Scholar
  29. Kian LK, Jawaid M, Ariffin H, Karim Z (2018) Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int J Biol Macromol 114:54–63CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating Biopolymer and Sustainable Raw Material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  31. Lam E, Hrapovic S, Majid E, Chong JH, Luong JHT (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997–1002CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee M, Heo MH, Lee H, Lee H-H, Jeong H, Kim Y-W, Shin J (2018) Facile and eco-friendly extraction of cellulose nanocrystals via electron beam irradiation followed by high-pressure homogenization. Green Chem 20:2596–2610CrossRefGoogle Scholar
  33. Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ling Z, Edwards JV, Guo Z, Prevost NT, Nam S, Wu Q, French AD, Xu F (2019) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26:861–876CrossRefGoogle Scholar
  36. Liu Y, Wang Q (2014) Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environ Sci Technol 48:12181–12189CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu Y, Guo B, Xia Q, Meng J, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2017) Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain Chem Eng 5:7623–7631CrossRefGoogle Scholar
  38. Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016a) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172CrossRefGoogle Scholar
  39. Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016b) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4(4):2165–2172CrossRefGoogle Scholar
  40. Ma Y, Xia Q, Liu Y, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H (2019) Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 4:8539–8547CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mahmoud KA, Male KB, Hrapovic S, Luong JHT (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1:1383–1386CrossRefPubMedPubMedCentralGoogle Scholar
  42. Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605CrossRefGoogle Scholar
  43. Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Wood Sci Technol 28:119–134CrossRefGoogle Scholar
  44. Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22Google Scholar
  45. Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793CrossRefGoogle Scholar
  46. Mohanta V, Madras G, Patil S (2014) Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces 6:20093–20101CrossRefPubMedPubMedCentralGoogle Scholar
  47. Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  48. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  49. Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRefGoogle Scholar
  50. Pable D, Chattergi S, Venugopalan MV, Sen TK, Giri JD, Sarkar D (2014) Soil quality assessment using fuzzy modelling - a case study in rainfed cotton growing agro-ecological subregions of vidarbha, Maharashtra Cotton Res J 5(2):126–131Google Scholar
  51. Pei L, Luo Y, Gu X, Dou H, Wang J (2019) Diffusion mechanism of aqueous solutions and swelling of cellulosic fibers in silicone non-aqueous dyeing system. Polymers 11:411CrossRefGoogle Scholar
  52. Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 1–48Google Scholar
  53. Qi H, Cai J, Zhang L, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromol 10:1597–1602CrossRefGoogle Scholar
  54. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefPubMedPubMedCentralGoogle Scholar
  55. Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773CrossRefGoogle Scholar
  56. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989CrossRefGoogle Scholar
  57. Schneider M, Graillat C, Boutti S, McKenna TF (2001) Decomposition of APS and H2O2 for emulsion polymerisation. Polym Bull 47:269–275CrossRefGoogle Scholar
  58. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  59. Shamskar KR, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crops Prod 93:203–211CrossRefGoogle Scholar
  60. Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sharma V, Crne M, Park JO, Srinivasarao M (2009) Structural origin of circularly polarized iridescence in jeweled beetles. Science 325:449CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032CrossRefGoogle Scholar
  64. Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674CrossRefGoogle Scholar
  65. Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18:247–256CrossRefGoogle Scholar
  66. Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14:1835–1841CrossRefGoogle Scholar
  67. Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRefGoogle Scholar
  68. Thambiraj S, Shankaran DR (2017) Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton. Appl Surf Sci 412:405–416CrossRefGoogle Scholar
  69. Wang Z, Wang Z, Ye Y, Chen N, Li H (2016) Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82 −) system. Chem Eng Sci 145:133–140CrossRefGoogle Scholar
  70. Xiong R, Han Y, Wang Y, Zhang W, Zhang X, Lu C (2014) Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface. Carbohydr Polym 113:264–271CrossRefPubMedPubMedCentralGoogle Scholar
  71. Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037CrossRefGoogle Scholar
  72. Yang H, van de Ven TGM (2016) A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromol 17:2240–2247CrossRefGoogle Scholar
  73. Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y, Liu W, Lan H, Zhang X, Si C (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7:7200–7208CrossRefGoogle Scholar
  75. Zhang YHP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromol 7:644–648CrossRefGoogle Scholar
  76. Zou X, Tan X, Berry R, Godbout JDL (2016) Flexible, iridescent nanocrystalline cellulose film, and method for preparation, Google PatentsGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Limerick Pulp and Paper CentreUniversity of New BrunswickFrederictonCanada
  3. 3.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations