, Volume 27, Issue 1, pp 233–247 | Cite as

Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties

  • Clémentine Darpentigny
  • Sonia Molina-Boisseau
  • Guillaume Nonglaton
  • Julien Bras
  • Bruno JeanEmail author
Original Research


High aspect ratio cellulose nanocrystals (CNCs) extracted from tunicate were used to create so-called cryogels from an ice-templating directional freeze-drying process. The structure of the resulting solid foam was investigated at the micro- and nanoscales by scanning electron microscopy and nitrogen adsorption measurements were used to extract the specific surface area. The mechanical properties were probed by compression tests. To highlight the specificities of tunicate CNC-based cryogels, results were compared with the one obtained from two other types of nanocellulose, namely cellulose nanofibrils (CNFs) from wood and CNCs from cotton, which exhibit different dimensions, aspect ratio, flexibility and crystallinity. While CNF- and cotton CNC-based cryogels exhibited a classical morphology characterized by a sheet-like structure, a particular honeycomb organization with individual particles was obtained in the case of tunicate CNC cryogels. The latter cryogels presented a very high specific surface area of about 122 m2 g−1, which is unexpected for foams prepared from a water-based process and much higher than what was obtained for CNF and cotton CNC cryogels (25 and 4 m2 g−1, respectively). High mechanical resistance and stiffness were also obtained with such tunicate CNC cryogels. These results are explained by the high crystallinity, aspect ratio and rigidity of the tunicate CNCs combined with the particular honeycomb architecture of the cryogel.


Cryogel Freeze-drying Nanocellulose Tunicate CNCs 



Cellulose nanofibrils


Cellulose nanocrystals


Scanning electron microscopy


Transmission electron microscopy


Brunauer, Emmett, Teller


Dynamic light scattering


Nuclear magnetic resonance


Nonlocal density functional theory


Atomic force microscopy



This work was supported by a grant from Labex ARCANE and CBH-EUR-GS (ANR-17-EURE-0003) and supported by the “Investissement d’avenir” program Glyco@Alps (ANR-15-IDEX-02). The authors acknowledge the Borregaard company for providing CNF materials and thank Jean-Luc Putaux and Christine Lancelon-Pin (CERMAV, Grenoble) for the electron microscopy images and Stéphanie Pradeau (CERMAV, Grenoble) for the measurement of the hemicellulose content in the CNF material. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01). CD would like to thank Laurent Orgéas (3SR laboratory, Grenoble) for fruitful discussion.

Supplementary material

10570_2019_2772_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1149 kb)


  1. Abitbol T, Rivkin A, Cao Y et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. CrossRefPubMedGoogle Scholar
  2. Ashby MF (2006) The properties of foams and lattices. Philos Trans R Soc Lond Math Phys Eng Sci 364:15–30. CrossRefGoogle Scholar
  3. Bardet R, Bras J (2013) Cellulose nanofibers and their use in paper industry. In: Handbook of green materials. World Scientific Publishing Co, pp 207–232Google Scholar
  4. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113(2):291–299. CrossRefGoogle Scholar
  5. Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121. CrossRefGoogle Scholar
  6. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410. CrossRefGoogle Scholar
  7. Chauve G, Fraschini C, Jean B (2014) Separation of cellulose nanocrystals. In: Materials and energy. World Scientific Publishing Co, Singapore, pp 73–87CrossRefGoogle Scholar
  8. Chen Y, Zhou L, Chen L et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26:6653–6667. CrossRefGoogle Scholar
  9. Cherhal F, Cousin F, Capron I (2015) Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31:5596–5602. CrossRefPubMedGoogle Scholar
  10. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater. CrossRefGoogle Scholar
  11. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  13. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. CrossRefPubMedGoogle Scholar
  14. Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113:11069–11075. CrossRefPubMedGoogle Scholar
  15. Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. CrossRefPubMedGoogle Scholar
  16. Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309. CrossRefGoogle Scholar
  17. Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19:2118. CrossRefGoogle Scholar
  18. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  19. Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236. CrossRefGoogle Scholar
  20. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. CrossRefPubMedGoogle Scholar
  21. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154. CrossRefPubMedGoogle Scholar
  22. Ishida O, Kim D-Y, Kuga S et al (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480. CrossRefGoogle Scholar
  23. Jean B, Dubreuil F, Heux L, Cousin F (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458. CrossRefPubMedGoogle Scholar
  24. Jiang F, Hsieh Y-L (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342. CrossRefGoogle Scholar
  25. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113. CrossRefPubMedGoogle Scholar
  26. Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf Physicochem Eng Asp 240:63–67. CrossRefGoogle Scholar
  27. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. CrossRefGoogle Scholar
  28. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. CrossRefGoogle Scholar
  29. Klemm D, Cranston ED, Fischer D et al (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21:720–748. CrossRefGoogle Scholar
  30. Kriechbaum K, Munier P, Apostolopoulou-Kalkavoura V, Lavoine N (2018) Analysis of the porous architecture and properties of anisotropic nanocellulose foams: a novel approach to assess the quality of cellulose nanofibrils (CNFs). ACS Sustain Chem Eng 6:11959–11967. CrossRefGoogle Scholar
  31. Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117. CrossRefGoogle Scholar
  32. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. CrossRefGoogle Scholar
  33. Martin C, Jean B (2014) Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nord Pulp Pap Res J 29:19–30. CrossRefGoogle Scholar
  34. Martoïa F, Cochereau T, Dumont PJJ et al (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391. CrossRefGoogle Scholar
  35. Mueller S, Sapkota J, Nicharat A et al (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J Appl Polym Sci. CrossRefGoogle Scholar
  36. Munier P, Gordeyeva K, Bergström L, Fall AB (2016) Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules 17:1875–1881. CrossRefPubMedGoogle Scholar
  37. Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157. CrossRefGoogle Scholar
  38. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. CrossRefGoogle Scholar
  39. Nguyen BN, Cudjoe E, Douglas A et al (2016) Polyimide cellulose nanocrystal composite aerogels. Macromolecules 49:1692–1703. CrossRefGoogle Scholar
  40. Osorio DA, Seifried B, Moquin P et al (2018) Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J Mater Sci 53:9842–9860. CrossRefGoogle Scholar
  41. Podsiadlo P, Sui L, Elkasabi Y et al (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906. CrossRefPubMedGoogle Scholar
  42. Ravikovitch PI, Neimark AV (2001) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J Phys Chem B 105:6817–6823. CrossRefGoogle Scholar
  43. Revol J-F, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172. CrossRefPubMedGoogle Scholar
  44. Robitzer M, Renzo FD, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140:9–16. CrossRefGoogle Scholar
  45. Rudaz C, Courson R, Bonnet L et al (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15:2188–2195. CrossRefPubMedGoogle Scholar
  46. Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. CrossRefPubMedGoogle Scholar
  47. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599. CrossRefGoogle Scholar
  48. Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786. CrossRefPubMedGoogle Scholar
  49. Tripathi A, Tardy BL, Khan SA et al (2019) Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. J Mater Chem A. CrossRefGoogle Scholar
  50. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316. CrossRefGoogle Scholar
  51. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025. CrossRefGoogle Scholar
  52. Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427–3441. CrossRefGoogle Scholar
  53. Zhao S, Malfait WJ, Guerrero-Alburquerque N et al (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Univ. Grenoble AlpesCNRS, CERMAVGrenobleFrance
  2. 2.Univ. Grenoble AlpesCNRS, Grenoble INP, LGP2GrenobleFrance
  3. 3.Univ. Grenoble AlpesCEA, LETI, DTBS, L2CBGrenobleFrance

Personalised recommendations