Advertisement

Cellulose

, Volume 26, Issue 18, pp 9447–9462 | Cite as

Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo

  • Qian Liu
  • Tao Yuan
  • Qin-jin Fu
  • Yuan-yuan Bai
  • Feng Peng
  • Chun-li YaoEmail author
Original Research
  • 200 Downloads

Abstract

A facile, green and economical method for the high-efficiency utilization and functionalization of bamboo fiber could significantly improve the development of biomass industries. Here, we demonstrated a deep eutectic solvent, which formed from choline chloride (ChCl) and lactic acid (LC), as pretreating agent to delignify moso bamboo (Phyllostachys pubescens) and produce nanocellulose. The results showed that most of the lignin was efficiently removed (94.39%) and 91% of the cellulose was recovered after the moso bamboo was pretreated with ChCl–LC at 120 °C for 3 h with a solid-to-liquid ratio of 1:25. Furthermore, nanofibers with widths of 20–80 nm were successfully prepared from pretreated fibers after a simple mechanical process. SEM and AFM images showed that they have excellent aspect ratio. In addition, the obtained nanofibers could be used to fabricate strong films which feature a high tensile strength ranged from 163 to 213 MPa.

Keywords

Pretreatment Deep eutectic solvent Bamboo Delignification Nanofibers 

Notes

Acknowledgment

Thanks to National Key R&D Program of China (2017YFD0600804).

References

  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147.  https://doi.org/10.1021/ja048266j CrossRefPubMedGoogle Scholar
  2. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18(19):5133–5141.  https://doi.org/10.1039/c6gc01007e CrossRefGoogle Scholar
  3. Ben-zhi Z, Mao-yi F, Jin-zhong X, Xiao-sheng Y, Zheng-cai L (2005) Ecological functions of bamboo forest: research and application. J For Res 16(2):143–147.  https://doi.org/10.1007/bf02857909 CrossRefGoogle Scholar
  4. Cao S, Ma X, Lin L, Huang F, Huang L, Chen L (2014) Morphological and chemical characterization of green bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for dissolving pulp production. BioResources 9(3):4528–4539CrossRefGoogle Scholar
  5. Chen L, Yu Q, Wang Q, Wang W, Qi W, Zhuang X, Wang Z, Yuan Z (2019) A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose 26(3):1947–1959.  https://doi.org/10.1007/s10570-018-2190-8 CrossRefGoogle Scholar
  6. Das AK, Sharma M, Mondal D, Prasad K (2016) Deep eutectic solvents as efficient solvent system for the extraction of kappa-carrageenan from Kappaphycus alvarezii. Carbohydr Polym 136:930–935.  https://doi.org/10.1016/j.carbpol.2015.09.114 CrossRefPubMedGoogle Scholar
  7. Espino M, de los Angeles Fernandez M, Gomez FJV, Silva MF (2016a) Natural designer solvents for greening analytical chemistry. TrAC Trends Anal Chem 76(Supplement C):126–136.  https://doi.org/10.1016/j.trac.2015.11.006 CrossRefGoogle Scholar
  8. Espino M, de los Angeles Fernandez M, Gomez FJV, Silva MF (2016b) Natural designer solvents for greening analytical chemistry. TrAC Trends Anal Chem 76(Supplement C):126–136.  https://doi.org/10.1016/j.trac.2015.11.006 CrossRefGoogle Scholar
  9. Foley A, Olabi AG (2017) Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew Sustain Energy Rev 68:1112–1114.  https://doi.org/10.1016/j.rser.2016.12.065 CrossRefGoogle Scholar
  10. Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14(8):2153.  https://doi.org/10.1039/c2gc35660k CrossRefGoogle Scholar
  11. He MX, Wang JL, Qin H, Shui ZX, Zhu QL, Wu B, Tan FR, Pan K, Hu QC, Dai LC, Wang WG, Tang XY, Hu G (2014) Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 111:645–654.  https://doi.org/10.1016/j.carbpol.2014.05.025 CrossRefPubMedGoogle Scholar
  12. Ho TTT, Abe K, Zimmermann T, Yano H (2014) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433.  https://doi.org/10.1007/s10570-014-0518-6 CrossRefGoogle Scholar
  13. Hou XD, Feng GJ, Ye M, Huang CM, Zhang Y (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Bioresour Technol 238:139–146.  https://doi.org/10.1016/j.biortech.2017.04.027 CrossRefPubMedGoogle Scholar
  14. Hou X-D, Lin K-P, Li A-L, Yang L-M, Fu M-H (2018a) Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation. Ind Crops Prod 120:322–329.  https://doi.org/10.1016/j.indcrop.2018.04.076 CrossRefGoogle Scholar
  15. Hou XD, Li AL, Lin KP, Wang YY, Kuang ZY, Cao SL (2018b) Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour Technol 249:261–267.  https://doi.org/10.1016/j.biortech.2017.10.019 CrossRefPubMedGoogle Scholar
  16. Hu K, Huang Y, Fei B, Yao C, Zhao C (2017) Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system. Cellulose 24(11):4611–4625.  https://doi.org/10.1007/s10570-017-1447-y CrossRefGoogle Scholar
  17. Huang Y, Fei B, Wei P, Zhao C (2016) Mechanical properties of bamboo fiber cell walls during the culm development by nanoindentation. Ind Crops Prod 92:102–108.  https://doi.org/10.1016/j.indcrop.2016.07.037 CrossRefGoogle Scholar
  18. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728–737.  https://doi.org/10.1016/j.rser.2015.01.042 CrossRefGoogle Scholar
  19. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23(10):9265–9275.  https://doi.org/10.1007/s11356-015-4780-4 CrossRefGoogle Scholar
  20. Laitinen O, Ojala J, Sirviö JA, Liimatainen H (2017) Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 24(4):1679–1689.  https://doi.org/10.1007/s10570-017-1226-9 CrossRefGoogle Scholar
  21. Lancefield CS, Panovic I, Deuss PJ, Barta K, Westwood NJ (2017) Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem 19(1):202–214.  https://doi.org/10.1039/c6gc02739c CrossRefGoogle Scholar
  22. Li P, Sirvio JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9(3):2846–2855.  https://doi.org/10.1021/acsami.6b13625 CrossRefPubMedGoogle Scholar
  23. Li P, Sirvio JA, Asante B, Liimatainen H (2018) Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydr Polym 199:219–227.  https://doi.org/10.1016/j.carbpol.2018.07.024 CrossRefPubMedGoogle Scholar
  24. Ling Z, Edwards JV, Guo Z, Prevost NT, Nam S, Wu Q, French AD, Xu F (2018) Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose 26(2):861–876.  https://doi.org/10.1007/s10570-018-2092-9 CrossRefGoogle Scholar
  25. Loow YL, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JM, Mohammad AW, Teoh WH (2015) Recent Advances in the Application of Inorganic Salt Pretreatment for Transforming Lignocellulosic Biomass into Reducing Sugars. J Agric Food Chem 63(38):8349–8363.  https://doi.org/10.1021/acs.jafc.5b01813 CrossRefPubMedGoogle Scholar
  26. Loow Y-L, New EK, Yang GH, Ang LY, Foo LYW, Wu TY (2017) Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 24(9):3591–3618.  https://doi.org/10.1007/s10570-017-1358-y CrossRefGoogle Scholar
  27. Lu H, Zhang L, Liu C, He Z, Zhou X, Ni Y (2018) A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose 25(12):7043–7051.  https://doi.org/10.1007/s10570-018-2067-x CrossRefGoogle Scholar
  28. Ma XJ, Cao SL, Lin L, Luo XL, Hu HC, Chen LH, Huang LL (2013) Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresour Technol 148:408–413.  https://doi.org/10.1016/j.biortech.2013.09.021 CrossRefPubMedGoogle Scholar
  29. Malaeke H, Housaindokht MR, Monhemi H, Izadyar M (2018) Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J Mol Liq 263:193–199.  https://doi.org/10.1016/j.molliq.2018.05.001 CrossRefGoogle Scholar
  30. Marcilla A, García AN, Pastor MV, León M, Sánchez AJ, Gómez DM (2013) Thermal decomposition of the different particles size fractions of almond shells and olive stones. Thermal behaviour changes due to the milling processes. Thermochim Acta 564:24–33.  https://doi.org/10.1016/j.tca.2013.04.019 CrossRefGoogle Scholar
  31. Mazumder BB, Ohtani Y, Cheng Z, Sameshima K (2000) Combination treatment of kenaf bast fiber for high viscosity pulp. J Wood Sci 46(5):364–370.  https://doi.org/10.1007/bf00776397 CrossRefGoogle Scholar
  32. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91.  https://doi.org/10.1016/j.biortech.2015.08.029 CrossRefPubMedGoogle Scholar
  33. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989CrossRefGoogle Scholar
  34. Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  35. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–An overview. Bioresour Technol 199:76–82.  https://doi.org/10.1016/j.biortech.2015.08.030 CrossRefPubMedGoogle Scholar
  36. Sirviö JA, Visanko M (2017) Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. J Mater Chem A 5(41):21828–21835.  https://doi.org/10.1039/c7ta05668k CrossRefGoogle Scholar
  37. Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406.  https://doi.org/10.1039/c5gc00398a CrossRefGoogle Scholar
  38. Sirvio JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17(9):3025–3032.  https://doi.org/10.1021/acs.biomac.6b00910 CrossRefGoogle Scholar
  39. Sirviö JA, Ukkola J, Liimatainen H (2019) Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 26(4):2303–2316.  https://doi.org/10.1007/s10570-019-02257-8 CrossRefGoogle Scholar
  40. Skulcova A, Majova V, Haz A, Kreps F, Russ A, Jablonsky M (2017) Long-term isothermal stability of deep eutectic solvents based on choline chloride with malonic or lactic or tartaric acid. IJSER 8:2249–2252Google Scholar
  41. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16Google Scholar
  42. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082.  https://doi.org/10.1021/cr300162p CrossRefGoogle Scholar
  43. Suopajarvi T, Sirvio JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr Polym 169:167–175.  https://doi.org/10.1016/j.carbpol.2017.04.009 CrossRefPubMedGoogle Scholar
  44. Tan YT, Ngoh GC, Chua ASM (2019) Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour Technol 281:359–366.  https://doi.org/10.1016/j.biortech.2019.02.010 CrossRefPubMedGoogle Scholar
  45. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38(6):1053–1064.  https://doi.org/10.1002/jssc.201401347 CrossRefPubMedGoogle Scholar
  46. TAPPI Standard test method (1999) T230 om-99, Viscosity of pulp (capillary viscometer method)Google Scholar
  47. Willberg-Keyriläinen P, Hiltunen J, Ropponen J (2017) Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 25(1):195–204.  https://doi.org/10.1007/s10570-017-1465-9 CrossRefGoogle Scholar
  48. Xu G-C, Ding J-C, Han R-Z, Dong J-J, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Biores Technol 203:364–369.  https://doi.org/10.1016/j.biortech.2015.11.002 CrossRefGoogle Scholar
  49. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T (2018) Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil. Bioresour Technol 255:189–197.  https://doi.org/10.1016/j.biortech.2018.01.132 CrossRefPubMedGoogle Scholar
  50. Yu J, Paterson N, Blamey J, Millan M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149.  https://doi.org/10.1016/j.fuel.2016.11.057 CrossRefGoogle Scholar
  51. Yu W, Wang C, Yi Y, Zhou W, Wang H, Yang Y, Tan Z (2019) Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose 26(5):3069–3082.  https://doi.org/10.1007/s10570-019-02290-7 CrossRefGoogle Scholar
  52. Zdanowicz M, Spychaj T, Maka H (2016) Imidazole-based deep eutectic solvents for starch dissolution and plasticization. Carbohydr Polym 140:416–423.  https://doi.org/10.1016/j.carbpol.2015.12.036 CrossRefPubMedGoogle Scholar
  53. Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380.  https://doi.org/10.1016/j.carbpol.2018.07.078 CrossRefPubMedGoogle Scholar
  54. Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jerome F (2012) Green and inexpensive choline-derived solvents for cellulose decrystallization. Chemistry 18(4):1043–1046.  https://doi.org/10.1002/chem.201103271 CrossRefPubMedGoogle Scholar
  55. Zhang B, Fu G-Q, Niu Y-S, Peng F, Yao C-L, Sun R-C (2016) Variations of lignin–lignin and lignin–carbohydrate linkages from young Neosinocalamus affinis bamboo culms. RSC Adv 6(19):15478–15484.  https://doi.org/10.1039/c5ra24819a CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qian Liu
    • 1
  • Tao Yuan
    • 1
  • Qin-jin Fu
    • 1
  • Yuan-yuan Bai
    • 2
  • Feng Peng
    • 1
  • Chun-li Yao
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijingChina
  2. 2.National Engineering Lab for Pulp and PaperChina National Pulp and Paper Research Institute Co. Ltd.BeijingChina

Personalised recommendations