, Volume 27, Issue 1, pp 25–40 | Cite as

Thermo-compression of cellulose nanofibrils

  • Fleur Rol
  • Antoine Rouilly
  • Julien BrasEmail author
Original Research


All cellulose composites made of 100% cellulose nanofibrils (CNFs) were produced without the use of solvent, binders, chemicals and/or dissolution process. Specimens were produced by thermo-compression and compared with materials made with cellulosic fibers. Different compression conditions such as temperature, time and pressure were tested and their impacts were quantified regarding the mechanical properties of the obtained materials. After determining the optimal compressing conditions, different grades of CNFs were tested and characterized using several characterization methods such as bending properties, Charpy impact strength, water absorption or degree of polymerization. Specimens made of 100% CNFs present improved bending properties, lower Charpy impact strength and lower water sensitivity than samples made with cellulose fibers. CNFs with their smaller size and increased number of possible H-bonds, create samples of lower porosity and allow establishing a solid H-bonding network. However, the particle size of the dry CNF powder influences strongly the self-bonding of the CNFs and the mechanical resistance of the thermo-compressed objects. Objects made of 100% CNFs can now be produced using an environmentally friendly process.

Graphic abstract

Schematic illustration of the study: production of 100% CNF objects by thermo-compression.


Nanocellulose Twin-screw extrusion Compression molding Mechanical properties Water sensitivity 



Cellulose nanofibrils


Twin-screw extrusion

CNF–Enz–TSE 7p

Cellulose nanofibrils produced via a combination of enzymatic pretreatment and 7 passes through the TSE


Cellulose nanofibrils produced via a combination of enzymatic pretreatment and a homogenizer


Cellulose nanofibrils produced via a combination of TEMPO oxidation and a grinder


Cellulose nanofibrils produced via a combination of phosphorylation and a grinder


Degree of polymerization



This research was supported by Institut Carnot Polynat (Grant Agreement No ANR-16-CARN-0025-01), Centre Technique du Papier (Grenoble, France) and LabEx Tec 21 (Grant Agreement No ANR-11-LABX-0030). LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir) and PolyNat Carnot Institutes. The authors want to thank Denis Delnevo for its help in the experiments.


  1. Ando M, Sato M (2009) Manufacture of plywood bonded with kenaf core powder. J Wood Sci 55:283–288. CrossRefGoogle Scholar
  2. Ando M, Sato M (2010) Evaluation of the self-bonding ability of sugi and application of sugi powder as a binder for plywood. J Wood Sci 56:194–200. CrossRefGoogle Scholar
  3. Anglès MN, Reguant J, Montané D et al (1999) Binderless composites from pretreated residual softwood. J Appl Polym Sci 73:2485–2491.;2-G CrossRefGoogle Scholar
  4. Anglès MN, Ferrando F, Farriol X, Salvadó J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenergy 21:211–224. CrossRefGoogle Scholar
  5. Arévalo R, Peijs T (2016) Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Compos Part A Appl Sci Manuf 83:38–46. CrossRefGoogle Scholar
  6. Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng. CrossRefGoogle Scholar
  7. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268. CrossRefGoogle Scholar
  8. Boon JG, Hashim R, Sulaiman O et al (2013) Influence of processing parameters on some properties of oil palm trunk binderless particleboard. Eur J Wood Wood Prod 71:583–589. CrossRefGoogle Scholar
  9. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Desmaisons J, Gustafsson E, Dufresne A, Bras J (2018) Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose. CrossRefGoogle Scholar
  11. Duchemin BJC, Mathew AP, Oksman K (2009) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos Part A Appl Sci Manuf 40:2031–2037. CrossRefGoogle Scholar
  12. Duchemin B, Le Corre D, Leray N et al (2016) All-cellulose composites based on microfibrillated cellulose and filter paper via a NaOH-urea solvent system. Cellulose 23:593–609. CrossRefGoogle Scholar
  13. Fu S, Tian C, Lucia LA (2017) Water sorption and barrier properties of cellulose nanocomposites. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley, Hoboken, pp 649–681CrossRefGoogle Scholar
  14. Gao Z, Wang X-M, Wan H, Brunette G (2011) Binderless panels made with black spruce bark. BioResources 6:3960–3972. CrossRefGoogle Scholar
  15. Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410. CrossRefGoogle Scholar
  16. González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609. CrossRefGoogle Scholar
  17. Hashim R, Saari N, Sulaiman O et al (2010) Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Mater Des 31:4251–4257. CrossRefGoogle Scholar
  18. Hashim R, Said N, Lamaming J et al (2011) Influence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater Des 32:2520–2525. CrossRefGoogle Scholar
  19. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. CrossRefGoogle Scholar
  20. Ho TTT, Abe K, Zimmermann T, Yano H (2014) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433. CrossRefGoogle Scholar
  21. Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233. CrossRefGoogle Scholar
  22. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. CrossRefPubMedGoogle Scholar
  23. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466. CrossRefGoogle Scholar
  24. Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290. CrossRefPubMedGoogle Scholar
  25. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. CrossRefGoogle Scholar
  26. Lavoine N, Bras J, Desloges I (2014a) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci. CrossRefGoogle Scholar
  27. Lavoine N, Desloges I, Khelifi B, Bras J (2014b) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49:2879–2893. CrossRefGoogle Scholar
  28. Lichtenstein K, Lavoine N (2017) Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polym Degrad Stab 146:53–60. CrossRefGoogle Scholar
  29. Liimatainen H, Visanko M, Sirviö J et al (2013) Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose 20:741–749. CrossRefGoogle Scholar
  30. Miki T, Takeuchi K, Sugimoto H, Kanayama K (2007) Performance study of compact wood powder material processing for improved impact characteristics aiming at substitute for plastics. J Mater Process Technol 192–193:422–427. CrossRefGoogle Scholar
  31. Mobarak F, Fahmy Y, Augustin H (1982) Binderless lignocellulose composite from bagasse and mechanism of self-bonding. Holzforsch Int J Biol Chem Phys Technol Wood 36:131–136. CrossRefGoogle Scholar
  32. Nadhari WNAW, Hashim R, Sulaiman O et al (2013) Utilization of oil palm trunk waste for manufacturing of binderless particleboard: optimization study. BioResources 8:1675–1696. CrossRefGoogle Scholar
  33. Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanoparticle Res 16:2349. CrossRefGoogle Scholar
  34. Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541. CrossRefGoogle Scholar
  35. Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. CrossRefGoogle Scholar
  36. Nilsson H, Galland S, Larsson PT et al (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712. CrossRefGoogle Scholar
  37. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromol 8:2712–2716. CrossRefGoogle Scholar
  38. Nonaka S, Umemura K, Kawai S (2013) Characterization of bagasse binderless particleboard manufactured in high-temperature range. J Wood Sci 59:50–56. CrossRefGoogle Scholar
  39. Okuda N, Sato M (2004) Manufacture and mechanical properties of binderless boards from kenaf core. J Wood Sci 50:53–61. CrossRefGoogle Scholar
  40. Okuda N, Sato M (2006) Water resistance properties of kenaf core binderless boards. J Wood Sci 52:422–428. CrossRefGoogle Scholar
  41. Okuda N, Hori K, Sato M (2006) Chemical changes of kenaf core binderless boards during hot pressing (II): effects on the binderless board properties. J Wood Sci 52:249–254. CrossRefGoogle Scholar
  42. Olszewska A, Eronen P, Johansson L-S et al (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226. CrossRefGoogle Scholar
  43. Orelma H, Korpela A, Kunnari V et al (2017) Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation. Cellulose 24:1691–1704. CrossRefGoogle Scholar
  44. Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047. CrossRefGoogle Scholar
  45. Piltonen P, Hildebrandt NC, Westerlind B et al (2016) Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Compos Sci Technol 135:153–158. CrossRefGoogle Scholar
  46. Pintiaux T (2015) Etude d’un procédé de mise en forme de matières naturelles lignocellulosiques par thermocompression uniaxiale haute pression. Université de ToulouseGoogle Scholar
  47. Pintiaux T, Viet D, Vandenbossche V et al (2013) High pressure compression-molding of α-cellulose and effects of operating conditions. Materials 6:2240–2261. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pintiaux T, Viet D, Vandenbossche V et al (2015) Binderless materials obtained by thermo-compressive processing of lignocellulosic fibers: a comprehensive review. BioResources 10:1915–1963CrossRefGoogle Scholar
  49. Pintiaux T, Heuls M, Vandenbossche V et al (2019) Cellulose consolidation under high-pressure and high-temperature uniaxial compression. Cellulose. CrossRefGoogle Scholar
  50. Rampinelli G, Di Landro L, Fujii T (2010) Characterization of biomaterials based on microfibrillated cellulose with different modifications. J Reinf Plast Compos 29:1793–1803. CrossRefGoogle Scholar
  51. Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5:6524–6531. CrossRefGoogle Scholar
  52. Rol F, Belgacem MN, Gandini A, Bras J (2018) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci. CrossRefGoogle Scholar
  53. Saadaoui N, Rouilly A, Fares K, Rigal L (2013) Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater Des 50:302–308. CrossRefGoogle Scholar
  54. Saini S, Yücel Falco Ç, Belgacem MN, Bras J (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135:239–247. CrossRefPubMedGoogle Scholar
  55. Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf Physicochem Eng Asp 289:219–225. CrossRefGoogle Scholar
  56. Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17:3401–3406. CrossRefGoogle Scholar
  57. Smyth M, Fournier C, Driemeier C et al (2017) Tunable structural and mechanical properties of cellulose nanofiber substrates in aqueous conditions for stem cell culture. Biomacromol 18:2034–2044. CrossRefGoogle Scholar
  58. Smyth M, M’Bengue M-S, Terrien M et al (2018) The effect of hydration on the material and mechanical properties of cellulose nanocrystal-alginate composites. Carbohydr Polym 179:186–195. CrossRefPubMedGoogle Scholar
  59. Taipale T, Österberg M, Nykänen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020. CrossRefGoogle Scholar
  60. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294.;2-1 CrossRefGoogle Scholar
  61. Turbak AF, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp USA 37:815–827Google Scholar
  62. Vaca-Medina G, Jallabert B, Viet D et al (2013) Effect of temperature on high pressure cellulose compression. Cellulose 20:2311–2319. CrossRefGoogle Scholar
  63. van Dam JEG, van den Oever MJA, Teunissen W et al (2004) Process for production of high density/high performance binderless boards from whole coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Ind Crops Prod 19:207–216. CrossRefGoogle Scholar
  64. Velásquez JA, Ferrando F, Farriol X, Salvadó J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37:269–278. CrossRefGoogle Scholar
  65. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638. CrossRefGoogle Scholar
  66. Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. CrossRefGoogle Scholar
  67. Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr Polym 87:2470–2476. CrossRefGoogle Scholar
  68. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CNRS, Grenoble INP, LGP2Univ. Grenoble AlpesGrenobleFrance
  2. 2.INP-ENSIACET, LCAUniversité de ToulouseToulouseFrance
  3. 3.Institut Universitaire de France (IUF)ParisFrance

Personalised recommendations