Advertisement

Cellulose

, Volume 26, Issue 17, pp 8971–8991 | Cite as

Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles

  • Maja RadetićEmail author
  • Darka Marković
Review Paper
  • 124 Downloads

Abstract

Nano-finishing of textile materials with metal and metal oxide nanoparticles has been in the focus of science and textile industry almost two decades. The emergence of bacteria resistance to silver nanoparticles due to over-use, cheaper precursor salts and excellent antimicrobial activity recently brought copper and copper oxide nanoparticles to scientific attention particularly for the utilization in the field of medical textiles. This paper is aimed to give an overview of the latest achievements in the finishing of cellulose fabrics with copper-based nanoparticles. Special emphasis has been given to difficulties met throughout the characterization of such textile nanocomposites caused by the copper instability. In addition the effect of various chemical modifications of cellulose fibers prior to impregnation with copper-based nanoparticles on their binding efficiency was considered. Much attention has been also paid to antimicrobial activity of such textile nanocomposites and the possibility to develop efficient antimicrobial cellulose wound dressings.

Graphic abstract

Keywords

Cotton Viscose Lyocell Cu/Cu2O/CuO nanoparticles Antimicrobial activity Cu2+-ions release 

Notes

Acknowledgments

The financial support for this study was provided by the Ministry of Education, Science and Technological Development of Republic of Serbia (Projects No. 45020 and 172056).

References

  1. Ahire JJ, Hattingh M, Neveling DP, Dicks LMT (2016) Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS ONE 11:e0152755.  https://doi.org/10.1371/journal.pone.0152755 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akter M, Sikder T, Rahman M, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16.  https://doi.org/10.1016/j.jare.2017.10.008 CrossRefPubMedGoogle Scholar
  3. Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M (2011) A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res J 81:1081–1088.  https://doi.org/10.1177/0040517510397577 CrossRefGoogle Scholar
  4. Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337.  https://doi.org/10.1002/smll.201200772 CrossRefPubMedGoogle Scholar
  5. Arvidsson R, Molander S, Sandén BA (2011) Impacts of the silver-coated future. J Ind Ecol 15:844–854.  https://doi.org/10.1111/j.1530-9290.2011.00400.x CrossRefGoogle Scholar
  6. Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed 7:3527–3535.  https://doi.org/10.2147/IJN.S29020 CrossRefGoogle Scholar
  7. Bajpai SK, Bajpai M, Sharma L (2012) Copper nanoparticles loaded alginate-impregnated cotton fabric with antibacterial properties. J Appl Polym Sci 126:E318–E325.  https://doi.org/10.1002/app.36981 CrossRefGoogle Scholar
  8. Bilian X (2002) Intrauterine devices. Best Pract Res Clin Obstet Gynaecol 6:155–168.  https://doi.org/10.1053/beog.2002.0267 CrossRefGoogle Scholar
  9. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409.  https://doi.org/10.1016/j.scitotenv.2007.10.010 CrossRefPubMedGoogle Scholar
  10. Borkow G, Zatcoff RC, Gabbay J (2009) Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses 73:883–886.  https://doi.org/10.1016/j.mehy.2009.02.050 CrossRefPubMedGoogle Scholar
  11. Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, Ikher S, Huszar M, Zatcoff RC (2010a) Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Rep Reg 18:266–275.  https://doi.org/10.1111/j.1524-475X.2010.00573.x CrossRefGoogle Scholar
  12. Borkow G, Okon-Levy N, Gabbay J (2010b) Copper oxide impregnated wound dressing: biocidal and safety studies. Wounds 22:301–310PubMedGoogle Scholar
  13. Bozzi A, Yuranova T, Guasaquillo I, Laub D, Kiwi J (2005) Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A 174:156–164.  https://doi.org/10.1016/j.jphotochem.2005.03.019 CrossRefGoogle Scholar
  14. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell compatibility in vitro. Adv Funct Mater 21:2506–2514.  https://doi.org/10.1002/adfm.201100123 CrossRefGoogle Scholar
  15. Castro C, Sanjines R, Pulgarin C, Osorio P, Giraldo SA, Kiwi J (2010) Structure-reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. J Photochem Photobiol A 216:295–302.  https://doi.org/10.1016/j.jphotochem.2010.06.030 CrossRefGoogle Scholar
  16. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25:135101–135113.  https://doi.org/10.1088/0957-4484/25/13/135101 CrossRefPubMedGoogle Scholar
  17. Chattopadhyay DP, Patel BH (2010) Effect of nanosized colloidal copper on cotton fabric. J Eng Fiber Fabr 5:1–6.  https://doi.org/10.1177/155892501000500301 CrossRefGoogle Scholar
  18. Chen D, Mai Z, Liu X, Ye D, Zhang H, Yin X, Zhou Y, Liu M, Xu W (2018) UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsesquioxane and nano-TiO2. Cellulose 25:3635–3647.  https://doi.org/10.1007/s10570-018-1790-7 CrossRefGoogle Scholar
  19. Cohen D, Soroka Y, Ma’or Z, Oron M, Portugal-Cohen M, Brégégère FM, Berhanu D, Valsami-Jones E, Hai N, Milner Y (2013) Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol In Vitro 27:292–298.  https://doi.org/10.1016/j.tiv.2012.08.026 CrossRefPubMedGoogle Scholar
  20. Cui Z, Ibrahim M, Yang C, Fang Y, Annam H, Li B, Wang Y, Xie GL, Sun G (2014) Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact. Molecules 19:9975–9985.  https://doi.org/10.3390/molecules19079975 CrossRefPubMedPubMedCentralGoogle Scholar
  21. da Costa W, da Silva Pereira B, Monthana MC, Kimura E, Hechenleitner AAW, de Oliveira MF, Pineda EAG (2017) Hybrid materials based on cotton fabric-Cu2O nanoparticles with antibacterial properties against S. aureus. Mater Chem Phys 201:339–343.  https://doi.org/10.1016/j.matchemphys.2017.08.046 CrossRefGoogle Scholar
  22. Dai L, Dai H, Yuan Y, Sun X, Zhu Z (2011) Effect of tempo oxidation system on kinetic constants of cotton fibers. BioResources 6:2619–2631.  https://doi.org/10.15376/biores.6.3.2619-2631 CrossRefGoogle Scholar
  23. Daoud WA, Xin JH, Zhang YH (2005) Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci 599:69–75.  https://doi.org/10.1016/j.susc.2005.09.038 CrossRefGoogle Scholar
  24. Dhineshbabu NR, Rajendran V (2016) Antibacterial activity of hybrid chitosan–cupric oxide nanoparticles on cotton fabric. IET Nanobiotechnol 10:13–19.  https://doi.org/10.1049/iet-nbt.2014.0073 CrossRefPubMedGoogle Scholar
  25. Din IM, Arshad F, Hussain Z, Mukhtar M (2017) Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanosc Res Lett 12:638.  https://doi.org/10.1186/s11671-017-2399-8 CrossRefGoogle Scholar
  26. Durán N, Marcato P, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208.  https://doi.org/10.1166/jbn.2007.022 CrossRefGoogle Scholar
  27. El-Nalhal IM, Zourab SM, Kodeh F, Selmane M, Genois I, Babonneau F (2012) Nanostructured copper oxide-cotton fibers: synthesis, characterisations, and applications. Int Nano Lett 2:16.  https://doi.org/10.1186/2228-5326-2-16 CrossRefGoogle Scholar
  28. El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82.  https://doi.org/10.1007/s10570-010-9455-1 CrossRefGoogle Scholar
  29. Emam HE, Ahmed HB, Bechtold T (2017) In situ deposition of Cu2O micro-needles for biologically active textiles and their release properties. Carbohyd Polym 165:255–265.  https://doi.org/10.1016/j.carbpol.2017.02.044 CrossRefGoogle Scholar
  30. Emam HE, Manian AP, Široká B, Duelli H, Merschak P, Redl B, Bechtold T (2014) Copper(I) oxide surface modified cellulose fibers-synthesis, characterization and antimicrobial properties. Surf Coat Technol 254:344–351.  https://doi.org/10.1016/j.surfcoat.2014.06.036 CrossRefGoogle Scholar
  31. Errokh A, Ferraria AM, Conceição DS, Vieira Ferreira LF, Botelho de Rego AM, Rei Vilar M, Boufi S (2016) Controlled growth of Cu2O nanoparticles bound to cotton fibres. Carbohyd Polym 141:229–237.  https://doi.org/10.1016/j.carbpol.2016.01.019 CrossRefGoogle Scholar
  32. Espírito Santo C, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiol Open 1:46–52.  https://doi.org/10.1002/mbo3.2 CrossRefGoogle Scholar
  33. Finley PJ, Norton J, Austin C, Mitchell T, Zank S, Durhm P (2015) Unprecedented silver resistance in clinically isolated Enterobacteriaceae: major implications for burn and wound management. Antimicrob Agents Chemother 59:4734–4741.  https://doi.org/10.1128/AAC.00026-15 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 35:323–335.  https://doi.org/10.1177/1528083706060785 CrossRefGoogle Scholar
  35. Gaminian H, Montazer M (2015) Enhanced self-cleaning properties of polyester fabric under visible light through single-step synthesis of cuprous oxide doped by nano-TiO2. Photochem Photobiol 91:1078–1087.  https://doi.org/10.1111/php.12478 CrossRefPubMedGoogle Scholar
  36. Gaminian H, Montazer M (2017) Decorating silver nanoparticles on electrospun cellulose nanofibers through a facile method by dopamine and ultraviolet irradiation. Cellulose 24:3179–3190.  https://doi.org/10.1007/s10570-017-1343-5 CrossRefGoogle Scholar
  37. Geranio L, Heuberger M, Nowack B (2009) The behaviour of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118.  https://doi.org/10.1021/es9018332 CrossRefPubMedGoogle Scholar
  38. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255:2730–2734.  https://doi.org/10.1016/j.apsusc.2008.08.110 CrossRefGoogle Scholar
  39. Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C (2014) Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 133:24–32.  https://doi.org/10.1016/j.jinorgbio.2013.12.009 CrossRefPubMedGoogle Scholar
  40. Gorjanc M, Šala M (2016) Durable antibacterial and UV protective properties of cellulose fabric functionalized with Ag/TiO2 nanocomposite during dyeing with reactive dyes. Cellulose 23:2199–2209.  https://doi.org/10.1007/s10570-016-0945-7 CrossRefGoogle Scholar
  41. Gorjanc M, Kovač F, Gorenšek M (2012) The influence of vat dyeing on the adsorption of synthesized colloidal silver onto cotton fabrics. Text Res J 82:62–69.  https://doi.org/10.1177/0040517511420754 CrossRefGoogle Scholar
  42. Grace M, Chand N, Bajpai SK (2009) Copper alginate-cotton cellulose (CACC) fibers with excellent antibacterial properties. J Eng Fiber Fabr 4:24–35.  https://doi.org/10.1177/155892500900400303 CrossRefGoogle Scholar
  43. Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42.  https://doi.org/10.3389/fgene.2015.00042 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grigore ME, Biscu ER, Holban AM, Gestel MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9:75.  https://doi.org/10.3390/ph9040075 CrossRefPubMedCentralGoogle Scholar
  45. Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011) Novel precursors for green synthsis and application of silver nanoparticles in the realm of cotton finishing. Carbohyd Polym 84:605–613.  https://doi.org/10.1016/j.carbpol.2010.12.032 CrossRefGoogle Scholar
  46. Hubacher D, Lara-Ricalde R, Taylor DJ, Guerra-Infante F, Guzman-Rodriguez R (2001) Use of copper intrauterine devices and the risk of tubal infertility among nulligravid women. N Engl J Med 345:561–567.  https://doi.org/10.1056/NEJMoa010438 CrossRefPubMedGoogle Scholar
  47. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M (2009) The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd Polym 78:564–569.  https://doi.org/10.1016/j.carbpol.2009.05.015 CrossRefGoogle Scholar
  48. Ilić V, Šaponjić Z, Vodnik V, Lazović S, Dimitrijević S, Jovančić P, Nedeljković JM, Radetić M (2010) Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 49:7287–7293.  https://doi.org/10.1021/ie1001313 CrossRefGoogle Scholar
  49. Kanade P, Patel B (2017) Copper nano-sol loaded woven fabrics: structure and color characterization. Fash Text 4:1–12.  https://doi.org/10.1186/s40691-017-0094-0 CrossRefGoogle Scholar
  50. Kaninen P, Johans C, Merta J, Kontturi K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci 318:88–95.  https://doi.org/10.1016/j.jcis.2007.09.069 CrossRefGoogle Scholar
  51. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118.  https://doi.org/10.1016/j.toxlet.2009.03.014 CrossRefPubMedGoogle Scholar
  52. Kiwi J, Pulgarin C (2010) Innovative self-cleaning and bactericide textiles. Catal Today 151:2–7.  https://doi.org/10.1016/j.cattod.2010.01.032 CrossRefGoogle Scholar
  53. Komeili Nila Z, Montazer M, Latifi M (2013) Synthesis of nano coper/nylon composite using ascorbic acid and CTAB. Colloid Surf A 439:167–175.  https://doi.org/10.1016/j.colsurfa.2013.03.003 CrossRefGoogle Scholar
  54. Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textiles fabrics. Text Res J 75:551–556.  https://doi.org/10.1177/0040517505053952 CrossRefGoogle Scholar
  55. Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textiles fabrics. J Mater Sci 38:2199–2204.  https://doi.org/10.1023/A:1023736416361 CrossRefGoogle Scholar
  56. Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, Von Goetz N, Nowack B (2014) Silver spaciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358.  https://doi.org/10.1016/j.chemosphere.2014.03.116 CrossRefPubMedGoogle Scholar
  57. Loran S, Chen S, Botton GA, Yahia LH, Yelon A, Sacher E (2019) The physicochemical characterization of the Cu nanoparticle surface, and of its evolution on atmospheric exposure: application to antimicrobial bandages for wound dressings. Appl Surf Sci 473:25–30.  https://doi.org/10.1016/j.apsusc.2018.12.149 CrossRefGoogle Scholar
  58. Mahdieh ZM, Shekarriz S, Taromi FA, Montazer M (2018) A new method for in situ synthesis of Ag–TiO2 nanocomposite paticles on polyester/cellulose fabric by photoreduction and self-cleaning. Cellulose 25:2355–2366.  https://doi.org/10.1007/s10570-018-1694-6 CrossRefGoogle Scholar
  59. Marcus EL, Yosef H, Borkow G, Caine Y, Sasson A, Moses AE (2017) Reduction of health care-associated infection indicators by copper exide-impregnated textiles: crossover, double-blind controlled study in chronic ventilator-dependent patients. Am J Infect Control 45:401–403.  https://doi.org/10.1016/j.ajic.2016.11.022 CrossRefPubMedGoogle Scholar
  60. Marković D, Korica M, Kostić M, Radovanović Ž, Šaponjić Z, Mitrić M, Radetić M (2018a) In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. Cellulose 25:829–841.  https://doi.org/10.1007/s10570-017-1566-5 CrossRefGoogle Scholar
  61. Marković D, Deeks C, Nunney T, Radovanović Ž, Radoičić M, Šaponjić Z, Radetić M (2018b) Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics previously modified with polycarboxylic acids. Carbohyd Polym 200:173–183.  https://doi.org/10.1016/j.carbpol.2018.08.001 CrossRefGoogle Scholar
  62. Marković M, Jocić N, Nunney T, Deeks C, Radovanović Ž, Šaponjić Z, Radetić M (2018c) The influence of 1,2,3,4-butantetracarboxylic acid on in situ synthesis of Cu2O/CuO nanoparticles on the cotton fabric and its antibacterial activty. In: Proceedings of 55th Serbian chemical society meeting, 8–9.6, Novi Sad, Serbia, pp 82–87Google Scholar
  63. Marković M, Nunney T, Deeks C, Radovanović Ž, Radoičić M, Radetić M (2018d) Antibacterial activity of copper-based nanoparticles synthetized on cotton fabric previously modified with oxalic acid. In: Proceedings of 7th international technical textile congress, Izmir, Turkey, 10–12 Oct 2018, pp 189–196Google Scholar
  64. Meghana S, Kabra P, Chakraborty S, Pamavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RCS Adv 5:12293–12299.  https://doi.org/10.1039/c4ra12163e CrossRefGoogle Scholar
  65. Meilert KT, Laub D, Kiwi J (2005) Photocatalytic self-cleaning of modified cotton textiles by TiO2 cluster attached by chemical spacers. J Mol Catal A 237:101–108.  https://doi.org/10.1016/j.molcata.2005.03.040 CrossRefGoogle Scholar
  66. Mejía MI, Marín JM, Restrepo G, Pulgarín C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy JC, Kiwi J (2009) Self-cleaning modified TiO2 cotton pre-treated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B 91:481–488.  https://doi.org/10.1016/j.apcatb.2009.06.017 CrossRefGoogle Scholar
  67. Midander Cronholm P, Karlsson HL, Elihn K, Möller Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II)oxide particles: a cross-disciplinary study. Small 5:389–399.  https://doi.org/10.1002/smll.200801220 CrossRefPubMedGoogle Scholar
  68. Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohyd Polym 79:526–532.  https://doi.org/10.1016/j.carbpol.2009.08.036 CrossRefGoogle Scholar
  69. Mihailović D, Šaponjić Z, Molina R, Radoičić M, Esquena J, Jovančić P, Nedeljković J, Radetić M (2011) Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym Compos 32:390–397.  https://doi.org/10.1002/pc.21053 CrossRefGoogle Scholar
  70. Milošević M, Radoičić M, Šaponjić Z, Nunney T, Deeks C, Lazić V, Mitrić M, Radetić T, Radetić M (2014) In situ photoreduction of Ag+-ions by TiO2 nanoparticles deposited on cotton and cotton/PET fabrics. Cellulose 21:3781–3795.  https://doi.org/10.1007/s10570-014-0373-5 CrossRefGoogle Scholar
  71. Mitrano DM, Lombi E, Dasilva YAR, Nowack B (2016) Unraveling the complexity in the aging of nanoenhanced textiles: a comprehensive sequential study on the effects of sunlight and washing on silver nanoparticles. Environ Sci Technol 50:5790–5799.  https://doi.org/10.1021/acs.est.6b01478 CrossRefPubMedGoogle Scholar
  72. Montazer M, Behzadnia A, Mogadam MB (2012) Superior self-claening features on wool fabric using TiO2/Ag nanocomposite optimized by response surface methodology. J Appl Polym Sci 125:E356–E363.  https://doi.org/10.1002/app.36768 CrossRefGoogle Scholar
  73. Montazer M, Dastjerdi M, Azdaloo M, Rad MM (2015) Simultaneous synthesis and fabrication of nano Cu2O on cellulose fabric using copper sulfate and glucose in alkali media producing safe bio- and photoactive textiles without color change. Cellulose 22:4049–4064.  https://doi.org/10.1007/s10570-015-0764-2 CrossRefGoogle Scholar
  74. Nikolić Т, Korica М, Milanović J, Kramar А, Petronijević Z, Kostić M (2017) TEMPO-oxidized cotton as a substrate for trypsin immobilization: Impact of functional groups on proteolytic activity and stability. Cellulose 24:1863–1875CrossRefGoogle Scholar
  75. Osorio-Vargas P, Sanjines R, Ruales C, Castro C, Pulgarin C, Rengifo-Herrera AJ, Lavanchy JC, Kiwi J (2011) Antimicrobial Cu-functionalized surfaces prepared by bipolar asymmetric DC-pulsed magnetron sputtering (DCP). J Photochem Photobiol A 220:70–76.  https://doi.org/10.1016/j.jphotochem.2011.03.022 CrossRefGoogle Scholar
  76. Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I (2015) Naoparticles for the treatment of wounds. Curr Pharm Des 21:4329–4341.  https://doi.org/10.2174/1381612821666150901104601 CrossRefPubMedGoogle Scholar
  77. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zboáil R (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71.  https://doi.org/10.1038/s41565-017-0013-y CrossRefPubMedGoogle Scholar
  78. Perelshtein I, Ruderman Y, Perkas N, Beddow J, Singh G, Vinatoru M, Joyce E, Mason TJ, Blanes M, Mollá K, Gedanken A (2013) The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose 20:1215–1221.  https://doi.org/10.1007/s10570-013-9929-z CrossRefGoogle Scholar
  79. Pohle D, Damm C, Neuhof J, Rösch A, Münstedt H (2007) Antimicrobial properties of orthopaedic textiles after in situ deposition of silver nanoparticles. Polym Polym Compos 15:357–363.  https://doi.org/10.1177/096739110701500502 CrossRefGoogle Scholar
  80. Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohyd Polym 77:791–798.  https://doi.org/10.1016/j.carbpol.2009.02.028 CrossRefGoogle Scholar
  81. Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung WP (2006) Self-cleaning cotton. J Mater Chem 16:4567–4574.  https://doi.org/10.1039/B610861J CrossRefGoogle Scholar
  82. Radetić M (2013a) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107.  https://doi.org/10.1007/s10853-012-6677-7 CrossRefGoogle Scholar
  83. Radetić M (2013b) Functionalization of textile materials with TiO2 nanoparticles. J Photochem Photobiol C 16:62–76.  https://doi.org/10.1016/j.jphotochemrev.2013.04.002 CrossRefGoogle Scholar
  84. Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponnjić Z, Nedeljković J (2008) Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym Adv Technol 19:1816–1821.  https://doi.org/10.1002/pat.1205 CrossRefGoogle Scholar
  85. Rezaie AB, Montazer M (2017) Polyester modification through synthesis of copper nanoparticles in presence of triethanolamine optimized with response surface methodology. Fiber Polym 18:434–444.  https://doi.org/10.1007/s12221-017-6780-0 CrossRefGoogle Scholar
  86. Rezaie AB, Montazer M, Bashiri A, Rad MM (2017a) A cleaner route for nanocolouration of wool fabrics via green assembling of cupric oxide nanoparticles along with antibacterial and UV protection properties. J Clean Prod 166:221–231.  https://doi.org/10.1016/j.jclepro.2017.08.046 CrossRefGoogle Scholar
  87. Rezaie AB, Bashiri A, Montazer M, Rad MM (2017b) Antibacterial, UV protective and ammonia sensing functionalized polyester fabric through in situ synthesis of cuprous oxide nanoparticles. Fiber Polym 18:1269–1279.  https://doi.org/10.1007/s12221-017-7263-z CrossRefGoogle Scholar
  88. Rezaie AB, Montazer M, Rad MM (2017c) Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in situ synthesis of cauliflower-like CuO nanoparticles. J Photochem Photobiol B 176:100–111.  https://doi.org/10.1016/j.jphotobiol.2017.09.021 CrossRefPubMedGoogle Scholar
  89. Rezaie AB, Montazer M, Rad MM (2017d) Biosynthesis of nano cupric oxide on cotton using Seidlitzia rosmarinus ashes utilizing bio, photo, sensing and leaching properties. Carbohyd Polym 177:1–12.  https://doi.org/10.1016/j.carbpol.2017.08.053 CrossRefGoogle Scholar
  90. Rezaie AB, Montazer M, Rad MM (2018) Scalable, eco-friendly and simple strategy for nano-functionalization of textiles using immobilized copper-based nanoparticles. Clean Technol Environ 20:2119–2133.  https://doi.org/10.1007/s10098-018-1596-1 CrossRefGoogle Scholar
  91. Ru J, Qian X, Wang Y (2018) Study on antibacterial finishing of cotton fabric with silver nanoparticles stabilized by nanoliposome. Cellulose 25:5443–5454.  https://doi.org/10.1007/s10570-018-1953-6 CrossRefGoogle Scholar
  92. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989.  https://doi.org/10.1021/bm0497769 CrossRefGoogle Scholar
  93. Saito T, Okita Y, Nge TT, Sugiyama J, Isogai A (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohyd Polym 65:435–440.  https://doi.org/10.1016/j.carbpol.2006.01.034 CrossRefGoogle Scholar
  94. Salas-Orozco M, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Jasso MEC, Ruiz F (2019) Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater.  https://doi.org/10.1155/2019/7630316 CrossRefGoogle Scholar
  95. Sedighi A, Montazer M (2016) Tunable shaped N-doped CuO nanoparticles on cotton fabric through processing conditions: synthesis, antibacterial behavior and mechanical properties. Cellulose 23:2229–2243.  https://doi.org/10.1007/s10570-016-0892-3 CrossRefGoogle Scholar
  96. Sedighi A, Montazer M, Hemmatinejad N (2014a) Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization. Cellulose 21:2119–2132.  https://doi.org/10.1007/s10570-014-0215-5 CrossRefGoogle Scholar
  97. Sedighi A, Montazer M, Samadi N (2014b) Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations. Carbohyd Polym 110:489–498.  https://doi.org/10.1016/j.carbpol.2014.04.030 CrossRefGoogle Scholar
  98. Shankar S, Rhim JW (2017) Facile approach for large scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohyd Polym 163:137–145.  https://doi.org/10.1016/j.carbpol.2017.01.059 CrossRefGoogle Scholar
  99. Simončič B, Klemenčič D (2016) Preparation and performance of silver as an antimicrobial agent for textiles: a review. Text Res J 86:210–223.  https://doi.org/10.1177/0040517515586157 CrossRefGoogle Scholar
  100. Sun C, Li Y, Li Z, Su Q, Wang Y, Liu X (2018) Durable and washable antibacterial copper nanoparticles bridged by surface grafting polymer brushes on cotton and polymeric materials. J Nanomater.  https://doi.org/10.1155/2018/6546193 CrossRefGoogle Scholar
  101. Tang B, Kaur J, Sun L, Wang X (2013) Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose 20:3053–3065.  https://doi.org/10.1007/s10570-013-0027-z CrossRefGoogle Scholar
  102. Teli MD, Sheikh J (2014) Bamboo rayon-copper nanoparticle composites durable antibacterial textile materials. Compos Interface 21:161–171.  https://doi.org/10.1080/15685543.2013.855528 CrossRefGoogle Scholar
  103. Torres A, Ruales C, Pulgarin C, Aimable A, Bowen P, Sarria V, Kiwi J (2010) innovative high-surface-area CuO pretreated cotton effective in bacterial inactivation under visible light. ACS Appl Mater Inter 2:2547–2552.  https://doi.org/10.1021/am100370y CrossRefGoogle Scholar
  104. Uddin MJ, Cesano F, Bonino F, Bordiga S, Spoto G, Scarano D, Zecchina A (2007) Photoactive TiO2 films on cellulose fibres: synthesis and characterization. J Photochem Photobiol A 189:286–294.  https://doi.org/10.1016/j.jphotochem.2007.02.015 CrossRefGoogle Scholar
  105. Villanueva ME, del Rosario Diez AM, González JA, Pérez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8:16280–16288.  https://doi.org/10.1021/acsami.6b02955 CrossRefPubMedGoogle Scholar
  106. Vincent M, Hartemann P, Engels-Deutsch M (2016) Antimicrobial applications of copper. Int J Hyg Environ Health 219:585–591.  https://doi.org/10.1016/j.ijheh.2016.06.003 CrossRefPubMedGoogle Scholar
  107. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M (2017) Contact killing and antimicrobial properties of copper. J Appl Microbiol 124:1032–1046.  https://doi.org/10.1111/jam.13681 CrossRefGoogle Scholar
  108. Wu CK, Yin M, O’ Brien S, Koberstein T (2006) Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem Mater 18:6054–6058.  https://doi.org/10.1021/cm061596d CrossRefGoogle Scholar
  109. Xu Q, Ke X, Ge N, Shen L, Zhang Y, Fu F, Liu X (2018a) Preparation of copper nanoparticles coated cotton fabrics with durable antibacterial properties. Fiber Polym 19:1004–1013.  https://doi.org/10.1007/s12221-018-8067-5 CrossRefGoogle Scholar
  110. Xu Q, Duan P, Zhang Y, Fu F, Liu X (2018b) Double protect copper nanoparticles loaded on l-cystine modified cotton fabric with durable antibacterial properties. Fiber Polym 19:2324–2334.  https://doi.org/10.1007/s12221-018-8621-1 CrossRefGoogle Scholar
  111. Yang J, Xu H, Zhang L, Zhong Y, Sui X, Mao Z (2017) Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surf Coat Technol 309:149–154.  https://doi.org/10.1016/j.surfcoat.2016.11.058 CrossRefGoogle Scholar
  112. Yuranova T, Laub D, Kiwi J (2007) Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catal Today 122:109–117.  https://doi.org/10.1016/j.cattod.2007.01.040 CrossRefGoogle Scholar
  113. Zarbaf D, Montazer M, Maryan AS (2017) In-situ synthesis of nano-copper on denim garment along with nano-clay for antibacterial and decoloration purposes. Cellulose 24:4083–4095.  https://doi.org/10.1007/s10570-017-1378-7 CrossRefGoogle Scholar
  114. Zou Y, Li Y, Guo Y, Zhou Q, An D (2012) Ultrasound-assisted synthesis of CuO nanostructures template by cotton fibers. Mater Res Bull 47:3135–3140.  https://doi.org/10.1016/j.materresbull.2012.08.020 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Innovation Center of the Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations