, Volume 26, Issue 16, pp 8745–8757 | Cite as

Fabrication of sandwich-structured cellulose composite membranes for switchable infrared radiation

  • Bin Gu
  • Kaifeng Liang
  • Tao ZhangEmail author
  • Xuejie Yue
  • Fengxian Qiu
  • Dongya YangEmail author
  • Mingming Chen
Original Research


Developing a feasible and efficient biomass-based membrane for energy-saving applications is critical for addressing greenhouse effect and energy crises. Herein, a sandwich-structured cellulose composite membrane with controllable thermal management properties was fabricated via the assembly of Ag nanoparticles/cellulose (ANPs/C), ultralong MnO2 nanowires (UMNWs), and MnO2 nanosheets/cellulose (MNSs/C). In this strategy, the UMNWs as building blocks were prepared by hydrothermal method. Then, the ANPs/C and MNSs/C were fabricated via magnetron sputtering and in situ growth method, respectively. Finally, the cellulose composite membrane (CCM) was fabricated via vacuum-filtration of cotton cellulose (CC), UMNWs and MNSs/C suspension, and subsequently the CC surfaces were covered with the ANPs by magnetron sputtering. The sandwich-structured CCM exhibits Janus infrared radiation properties due the asymmetrical surface structure and chemical compositions. The ANPs layer has high infrared reflectivity of 91.6%, however, the MNSs/C layer shows the low infrared reflectivity with 62.7%. The results indicate that the Janus sandwich CCM not only can efficiently reflect infrared heat back toward the body, in order to achieve highly thermal insulating under low temperature environment, but also can achieve highly passive cooling under high temperature environment. In addition, the CCM exhibits excellent antibacterial properties due to presence of ANPs, which is beneficial to enhance the lifespan of the personal thermal management membrane. The present work may give some insight to prepare sandwich-structured membranes with controllable thermal management properties for application in wearable textiles.

Graphic abstract


Cellulose membrane Thermal management Thermal insulating Passive cooling Antibacterial properties 



This work was financially supported by National Natural Science Foundation of China (21706100 and 21878132), Natural Science Foundation of Jiangsu Province (BK20160500, BK20161362 and BK20160491), State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRF18003), Scientific Research Foundation for Advanced Talents, Jiangsu University (15JDG142), Youth Talent Cultivation Program of Jiangsu University, High-Level Personnel Training Project of Jiangsu Province (BRA2016142), Natural Science Foundation of Hebei Province (B2019108017) and Society Development Fund of Zhenjiang (SH2018009).

Supplementary material

10570_2019_2653_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1762 kb)


  1. Abb M, Wang Y, Papasimakis N, de Groot CH, Muskens OL (2014) Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett 14:346–352CrossRefGoogle Scholar
  2. Anvari-Moghaddam A, Monsef H, Rahimi-Kian A (2015) Optimal smart home energy management considering energy saving and a comfortable lifestyle. IEEE Trans Smart Grid 6:324–332CrossRefGoogle Scholar
  3. Bojarska M, Nowak B, Skowroński J, Piątkiewicz W, Gradoń L (2017) Growth of ZnO nanowires on polypropylene membrane surface—characterization and reactivity. Appl Surf Sci 391:457–467CrossRefGoogle Scholar
  4. Chen C, Ma T, Shang Y, Gao B, Jin B, Dan H, Li Q, Yue Q, Li Y, Wang Y, Xu X (2019) In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic N/Fe in Enteromorpha and non-radical reaction. Appl. Catal B 250:382–395CrossRefGoogle Scholar
  5. Cobo S, Heidkamp J, Jacques P-A, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S, Fontecave M, Artero V (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807CrossRefGoogle Scholar
  6. Duan P, Ma T, Yue Y, Li Y, Zhang X, Shang Y, Gao B, Zhang Q, Yue Q, Xu X (2019) Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation. Environ Sci Nano 6:1799–1811CrossRefGoogle Scholar
  7. Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, Hitz EM, Xie H, Liu B, Song J, Yang B, Hu L (2017) Three-dimensional printed thermal regulation textiles. ACS Nano 11:11513–11520CrossRefGoogle Scholar
  8. Goldstein EA, Raman AP, Fan S (2017) Sub-ambient non-evaporative fluid cooling with the sky. Nat Energy 2:17143CrossRefGoogle Scholar
  9. Koo B, Goli P, Sumant AV, dos Santos Claro PC, Rajh T, Johnson CS, Balandin AA, Shevchenko EV (2014) Toward lithium ion batteries with enhanced thermal conductivity. ACS Nano 8:7202–7207CrossRefGoogle Scholar
  10. Liu H, Chen J, Chen L, Xu Y, Guo X, Fang D (2016) Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification. ACS Sustain Chem Eng 4:3140–3150CrossRefGoogle Scholar
  11. Liu Q, Huang J, Zhang J, Hong Y, Wan Y, Wang Q, Gong M, Wu Z, Guo CF (2018) Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure. ACS Appl Mater Interfaces 10:2026–2032CrossRefGoogle Scholar
  12. Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K, Nummelin S, Ropponen J (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328:1009–1014CrossRefGoogle Scholar
  13. Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E (2005) Design and synthesis of Janus micro- and nanoparticles. J Mater Chem 15:3745CrossRefGoogle Scholar
  14. Roh K-H, Martin DC, Lahann J (2005) Biphasic Janus particles with nanoscale anisotropy. Nat Mater 4:759–763CrossRefGoogle Scholar
  15. Rong S, Zhang P, Yang Y, Zhu L, Wang J, Liu F (2017) MnO2 framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room temperature. ACS Catal 7:1057–1067CrossRefGoogle Scholar
  16. Wang H, Yang S, Yin S-N, Chen L, Chen S (2015) Janus suprabead displays derived from the modified photonic crystals toward temperature magnetism and optics multiple responses. ACS Appl Mater Interfaces 7:8827–8833CrossRefGoogle Scholar
  17. Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K (2015) Fast adaptive thermal camouflage based on flexible VO2/graphene/CNT thin films. Nano Lett 15:8365–8370CrossRefGoogle Scholar
  18. Xu C, Qu S, Pang Y, Wang J, Yan M, Zhang J, Wang Z, Wang W (2018) Metamaterial absorber for frequency selective thermal radiation. Infrared Phys Technol 88:133–138CrossRefGoogle Scholar
  19. Yue X, Zhang T, Yang D, Qiu F, Li Z (2018a) Janus ZnO-cellulose/MnO2 hybrid membranes with asymmetric wettability for highly-efficient emulsion separations. Cellulose 25:5951–5965CrossRefGoogle Scholar
  20. Yue X, Zhang T, Yang D, Qiu F, Li Z (2018b) Ultralong MnO2 nanowire enhanced multiwall carbon nanotube hybrid membrane with underwater superoleophobicity for efficient oil-in-water emulsions separation I. Ind Eng Chem Res 57:10439–10447CrossRefGoogle Scholar
  21. Yue X, Zhang T, Yang D, Qiu F, Li Z, Wei G, Qiao Y (2019a) Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J Colloid Interface Sci 535:363–370CrossRefGoogle Scholar
  22. Yue X, Zhang T, Yang D, Qiu F, Wei G, Lv Y (2019b) A robust Janus fibrous membrane with switchable infrared radiation properties for potential building thermal management applications. J Mater Chem A 7:8344–8352CrossRefGoogle Scholar
  23. Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H (2019c) Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 63:103808CrossRefGoogle Scholar
  24. Zhang T, Yu H, Zhou Y, Rong J, Qiu F, Zhang Y (2015) In situ fabrication and infrared emissivity properties of oriented LDHs films on Al substrates. RSC Adv 5:82415–82420CrossRefGoogle Scholar
  25. Zhou H, Zhang T, Yue X, Peng Y, Qiu F, Yang D (2019) Fabrication of flexible and superhydrophobic melamine sponge with aligned copper nanoparticle coating for self-cleaning and dual thermal management properties. Ind Eng Chem Res 58:4844–4852CrossRefGoogle Scholar
  26. Zibaii MI, Kazemi A, Latifi H, Azar MK, Hosseini SM, Ghezelaiagh MH (2010) Measuring bacterial growth by refractive index tapered fiber optic biosensor. J Photochem Photobiol B 101:313–320CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Institute of Green Chemistry and Chemical TechnologyJiangsu UniversityZhenjiangChina
  3. 3.Department of PhysicsJiangsu UniversityZhenjiangChina

Personalised recommendations