Advertisement

Cellulose

pp 1–13 | Cite as

All-cellulose composites via short-fiber dispersion approach using NaOH–water solvent

  • Oona Korhonen
  • Daisuke Sawada
  • Tatiana BudtovaEmail author
Original Research
  • 27 Downloads

Abstract

All-cellulose composites were prepared by dispersing short softwood kraft fibers in dissolving pulp-8 wt% NaOH–water. The degree of polymerization of the dissolving pulp used for the matrix and the concentration of reinforcing fibers were varied. Morphology, density, crystallinity, cellulose I content and mechanical properties of the composites were investigated. A special attention was paid on the presence of non-dissolved fibers originating from incomplete dissolution of pulp in 8 wt% NaOH–water thus decreasing the actual concentration of dissolved cellulose in matrix solution. This “lack of matter” induced the formation of pores, which strongly influenced the morphology of composites. Density was shown to be the main parameter contributing to the mechanical properties of the prepared all-cellulose composites. The results demonstrate the complexity of the system and the need in taking into account the dissolution power of the solvent.

Graphical abstract

Morphology of all-cellulose composites: matrix is from low-DP dissolving pulp (a) and from high-DP pulp (b).

Keywords

All-cellulose composites NaOH Dissolution Density Mechanical properties 

Notes

Acknowledgments

The financial support from Business Finland (Grant No. 3848/31/201), Stora Enso Oyj and UPM-Kymmene Oyj is gratefully acknowledged. Authors also want to thank to Separation Research Oy Ab and Fibertus Oy for collaboration; Herbert Sixta, Mark Hughes and Michael Hummel (Aalto University) for fruitful discussions, Suzanne Jacomet (CEMEF, MINES ParisTech) for assistance with SEM, Rita Hatakka (Aalto University) for help with pulp composition determinations as well as Hannu Revitzer (Aalto University) for elemental analysis. We thank Dr. Isabelle Morfin (ESRF) for assistance at the D2AM beam line, and ESRF (Grenoble, France) for the provision of beam time. At the D2AM beam line, the WAXS Open for SAXS detector (WOS) was funded by the French National Research Agency (ANR) under the “Investissements d’avenir” program (Grant No. ANR-11-EQPX-0010).

Supplementary material

10570_2019_2422_MOESM1_ESM.docx (823 kb)
Supplementary material 1 (DOCX 823 kb)

References

  1. Abbot A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791.  https://doi.org/10.1007/s10570-010-9427-5 CrossRefGoogle Scholar
  2. Alexander L, Klug HP (1948) Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures. Anal Chem 20:886–889CrossRefGoogle Scholar
  3. Ashiotis G, Deschildre A, Nawaz Z, Wright JP, Karkoulis D, Picca FE, Kieffer J (2015) The fast azimuthal integration Python library: pyFAI. J Appl Crystallogr 48:510–519CrossRefGoogle Scholar
  4. Brückner S (2000) Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J Appl Crystallogr 33:977–979CrossRefGoogle Scholar
  5. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRefGoogle Scholar
  6. Capiati NJ, Porter RS (1975) The concept of one polymer composites modelled with high density polyethylene. J Mater Sci 10:1671–1677.  https://doi.org/10.1007/BF00554928 CrossRefGoogle Scholar
  7. Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I: in solutions of NaOH, particularly at T°C below the normal. J Text Inst 25:T174–T196CrossRefGoogle Scholar
  8. Dormanns JW, Schuermann J, Müssig J, Duchemin BJC, Staiger MP (2016) Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system. Compos A 82:130–140.  https://doi.org/10.1016/j.compositesa.2015.12.002 CrossRefGoogle Scholar
  9. Duchemin B, Corre DL, Leray N, Dufresne A, Staiger MP (2016) All-cellulose composites based on microfibrillated cellulose and filter paper via NaOH–urea solvent system. Cellulose 23:593–609.  https://doi.org/10.1007/s10570-015-0835-4 CrossRefGoogle Scholar
  10. Duchemin BJC, Newman RH, Staiger MP (2009) Structure-property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230.  https://doi.org/10.1016/j.compscitech.2009.02.027 CrossRefGoogle Scholar
  11. Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose-sodium hydroxide below 0°C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287.  https://doi.org/10.1021/bm0702399 CrossRefGoogle Scholar
  12. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548CrossRefGoogle Scholar
  13. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225.  https://doi.org/10.1016/j.polymer.2005.08.040 CrossRefGoogle Scholar
  14. Gindl W, Schöberl T, Keckes J (2006) Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Appl Phys A 83:19–22.  https://doi.org/10.1007/s00339-005-3451-6 CrossRefGoogle Scholar
  15. Haverhals LM, Sulpizio HM, Fayos ZA, Trulove MA, Reichert WM, Foley MP, De Long HC, Trulove PC (2012) Process variables that control natural fiber welding: time, temperature and amount of ionic liquid. Cellulose 19:13–22.  https://doi.org/10.1007/s10570-011-9605-0 CrossRefGoogle Scholar
  16. Hildebrandt N, Piltonen P, Valkama J, Illikainen M (2017) Self-reinforcing composites from commercial pulps via partial dissolution with NaOH/urea. Ind Crops Prod 109:79–84.  https://doi.org/10.1016/j.indcrop.2017.08.014 CrossRefGoogle Scholar
  17. Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186.  https://doi.org/10.1007/s10853-011-5774-3 CrossRefGoogle Scholar
  18. Huber T, Bickerton S, Müssig J, Pang S, Staiger MP (2013) Flexural and impact properties of all-cellulose composite laminates. Compos Sci Technol 88:92–98.  https://doi.org/10.1016/j.compscitech.2013.08.040 CrossRefGoogle Scholar
  19. Janson J (1970) Calculation of the polysaccharide composition of wood and pulp. Paperi ja Puu 5:323–329Google Scholar
  20. Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24–1:71–96.  https://doi.org/10.1295/polymj.24.71 CrossRefGoogle Scholar
  21. Kröling H, Duchemin B, Dormanns J, Schabel S, Staiger MP (2018) Mechanical anisotropy of paper based all-cellulose composites. Compos A 113:150–157.  https://doi.org/10.1016/j.compositesa.2018.07.005 CrossRefGoogle Scholar
  22. Labidi K, Korhonen O, Zrida M, Hamzaoui AH, Budtova T (2019) All-cellulose composites from alfa and wood fibers. Ind Crops Prod 127:135–141CrossRefGoogle Scholar
  23. Lourdin D, Peixinho J, Bréard J, Cathala B, Leroy E, Duchemin B (2016) Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose 23:529–543.  https://doi.org/10.1007/s10570-015-0805-x CrossRefGoogle Scholar
  24. Michud A, Hummel M, Sixta H (2015) Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polymer 75:1–9.  https://doi.org/10.1016/j.polymer.2015.08.017 CrossRefGoogle Scholar
  25. Nadhan AV, Rajulu AV, Li R, Jie C, Zhang L (2012) Properties of regenerated cellulose short fibers/cellulose green composite films. J Polym Environ 20:454–458.  https://doi.org/10.1007/s10924-011-0398-x CrossRefGoogle Scholar
  26. Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716.  https://doi.org/10.1021/bm0703416 CrossRefGoogle Scholar
  27. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687.  https://doi.org/10.1021/ma049300h CrossRefGoogle Scholar
  28. Ouajai S, Shanks RA (2009) Preparation, structure and mechanical properties of all-hemp. Cellul Biocompos 69:2119–2126.  https://doi.org/10.1016/j.compscitech.2009.05.005 Google Scholar
  29. Piltonen P, Hildebrandt N, Westerlind B, Valkama J, Tervahartiala T, Illikainen M (2016) Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Compos Sci Technol 135:153–158.  https://doi.org/10.1016/j.compscitech.2016.09.022 CrossRefGoogle Scholar
  30. Pullawan T, Wilkinson AN, Eichhorn SJ (2012) Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 13:2528–2536.  https://doi.org/10.1021/bm300746r CrossRefGoogle Scholar
  31. Pullawan T, Wilkinson AN, Zhang LN, Eichhorn SJ (2014) Deformation micromechanics of all-cellulose nanocomposites: comparing matrix and reinforcing components. Carbohydr Polym 100:31–39.  https://doi.org/10.1016/j.carbpol.2012.12.066 CrossRefGoogle Scholar
  32. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH-solutions. Biomacromolecules 4:259–264.  https://doi.org/10.1021/bm020100s CrossRefGoogle Scholar
  33. Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  34. Sirviö JA, Visanko M, Hildebrandt NC (2017) Rapid preparation of all-cellulose composites by solvent welding based on the use of aqueous solvent. Eur Polym J 97:292–298.  https://doi.org/10.1016/j.eurpolymj.2017.10.021 CrossRefGoogle Scholar
  35. Sobczak L, Lang RW, Haider A (2012) Polypropylene composites with natural fibers and wood—general mechanical property profiles. Compos Sci Technol 72:550–557CrossRefGoogle Scholar
  36. Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned lingo-cellulosic fibers. Compos Sci Technol 68:2201–2207.  https://doi.org/10.1016/j.compscitech.2008.03.023 CrossRefGoogle Scholar
  37. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563CrossRefGoogle Scholar
  38. Ward IM, Hine PJ (1997) Novel composites by hot compaction of fibers. Polym Eng Sci 37:1809–1814.  https://doi.org/10.1002/pen.11830 CrossRefGoogle Scholar
  39. Woodhams RT, Thomas G, Rodgers DK (1984) Wood fibers as reinforcing fillers for polyolefins. Polym Eng Sci 24:1166–1171CrossRefGoogle Scholar
  40. Yang Q, Le A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70:2319–2324.  https://doi.org/10.1016/j.compscitech.2010.09.012 CrossRefGoogle Scholar
  41. Yang Q, Saito T, Berglund LA, Isogai A (2015) Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 7 (42):17957–17963.  https://doi.org/10.1039/C5NR05511C CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Oona Korhonen
    • 1
  • Daisuke Sawada
    • 1
  • Tatiana Budtova
    • 1
    • 2
    Email author
  1. 1.Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityAalto, EspooFinland
  2. 2.CEMEF – Center for Materials Forming, UMR CNRS 7635MINES ParisTech, PSL Research UniversitySophia AntipolisFrance

Personalised recommendations