Advertisement

Cellulose

, Volume 26, Issue 7, pp 4417–4429 | Cite as

Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals

  • Roberta Motta NevesEmail author
  • Kirk Silveira Lopes
  • Matheus Vinicius Gregory Zimmermann
  • Matheus Poletto
  • Ademir José Zattera
Original Research
  • 54 Downloads

Abstract

Expanded nanocomposite production is an evolutionary and emerging technology in the field of porous materials, because it’s characterized by combining the structural characteristics of the nanocomposites with the lightness of the polymeric foams. Three different processes were used in the present study: (1) extraction of two types of nanocellulose: cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs), both from curaua fibers. CNFs were obtained by mechanical defibrillation method and CNCs by 2,2,6,6-tetramethylpiperidine-1-oxyl (T.E.M.P.O.)-mediated oxidation method. (2) incorporation of reinforcement in a polystyrene matrix, producing nanocomposites in the following concentrations: 0.25%, 0.50% and 1.00% (w/w). (3) nanocomposite expansion with supercritical carbon dioxide fluid (scCO2), a new expander agent trend. The nanocomposites all had increased storage and loss moduli in relation to neat PS. In the expanded nanocomposites, the incorporation of CNFs promoted an increase in the compressive strength and a decrease in the cell size in comparison to the samples reinforced with CNCs and polystyrene foam. In the nanocomposites produced with CNCs, no significant variations were observed when compared to pure polystyrene foam.

Graphical abstract

Keywords

Nanocomposites Expanded nanocomposites Cellulose Nanofibers Nanocrystals 

Notes

Acknowledgments

The authors would like to thank the Brazilian Ministry of Labor (MTE) and CNPq for the financial support.

References

  1. Borsoi C, Zimmermann MGV, Zattera AJ, Santana RMC, Ferreira CA (2016) Thermal degradation behavior of cellulose nanofibers and nanowhiskers. J Therm Anal Calorim 126:1867.  https://doi.org/10.1007/s10973-016-5653-x CrossRefGoogle Scholar
  2. Cao X, Ding B, Yu Al-Deyab SS (2012) Cellulose nanowhiskers extracted from T.E.M.P.O.-oxidized jute fibers. Carbohydr Polym 90:1075.  https://doi.org/10.1016/j.carbpol.2012.06.046 CrossRefGoogle Scholar
  3. Chen X, Yu J, Zhang Z, Lu C (2011) Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polym 85:245.  https://doi.org/10.1016/j.carbpol.2011.02.022 CrossRefGoogle Scholar
  4. Chirayil CJ, Mathew M, Hassan PA, Mozetic M, Thomas S (2014) Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites. Int J Biol Macromol 69:274.  https://doi.org/10.1016/j.ijbiomac.2014.05.055 CrossRefGoogle Scholar
  5. Costeaux S (2014) CO2-blown nanocellular foams. J Appl Polym Sci 131:41293.  https://doi.org/10.1002/app.41293 Google Scholar
  6. Eaves D (2004) Handbook of polymer foams, 1st edn. Rapra, Shrewsbury, pp 1–8Google Scholar
  7. Etaati A, Pather S, Fang Z (2014) The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Compos B 62:19.  https://doi.org/10.1016/j.compositesb.2014.02.011 CrossRefGoogle Scholar
  8. Hansen CM (2007) Hansen solubility parameters—a user’s handbook, 2nd edn. CRC Press, New York, p 36CrossRefGoogle Scholar
  9. Hebeish A, Hashem MM, El-Hady A, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407.  https://doi.org/10.1016/j.carbpol.2012.08.094 CrossRefGoogle Scholar
  10. Hoareau W, Trindade WG, Siegmund S, Castellan A, Frollini E (2005) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym Degrad Stab 86:567.  https://doi.org/10.1016/j.polymdegradstab.2004.07.005 CrossRefGoogle Scholar
  11. Huda M, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424.  https://doi.org/10.1016/j.compscitech.2007.06.022 CrossRefGoogle Scholar
  12. Idicula M, Malhotra SK, Joseph K, Thomas S (2005) Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol 65:1077.  https://doi.org/10.1016/j.compscitech.2004.10.023 CrossRefGoogle Scholar
  13. Jhon MJ, Thomas S (2008) Biofibers and biocomposites. Carbohydr Polym 71:343–364.  https://doi.org/10.1016/j.carbpol.2007.05.040 CrossRefGoogle Scholar
  14. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232.  https://doi.org/10.1016/j.indcrop.2012.03.018 CrossRefGoogle Scholar
  15. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresn A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368.  https://doi.org/10.1016/j.polymer.2017.09.043 CrossRefGoogle Scholar
  16. Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydr Polym 136:955.  https://doi.org/10.1016/j.carbpol.2015.10.008 CrossRefGoogle Scholar
  17. Lazzari LK, Zampieri VB, Zanini M, Zattera AJ, Baldasso C (2017) Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose 24:3421.  https://doi.org/10.1007/s10570-017-1349-z CrossRefGoogle Scholar
  18. Lee J, Deng Y (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:6034.  https://doi.org/10.1039/C1SM05388D CrossRefGoogle Scholar
  19. Lee LJ, Zeng C, Cao X, Han X, Shem J, Xu G (2005) Polymer nanocomposite foams: review. Compos Sci Technol 65:2344.  https://doi.org/10.1016/j.compscitech.2005.06.016 CrossRefGoogle Scholar
  20. Li Y, Ragauskas AJ (2012) Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv 8:2237.  https://doi.org/10.1039/C2RA00646D Google Scholar
  21. Li Y, Ren H, Ragauskas AJ (2011) Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties. J Nanosci Nanotechnol 11:6904.  https://doi.org/10.1166/jnn.2011.3834 CrossRefGoogle Scholar
  22. Maiti S, Ray D, Mitra D, Misra M (2012) Study of compostable behavior of jute nanofiber reinforced biocopolyester composites in aerobic compost environment. J Appl Polym Sci 123:2952.  https://doi.org/10.1002/app.34918 CrossRefGoogle Scholar
  23. Marques MFV, Melo RP, Araujo RS, Lunz JN, Aguiar VO (2015) Improvement of mechanical properties of natural fiber-polypropylene composites using successive alkaline treatments. J Appl Polym Sci 132:41710.  https://doi.org/10.1002/app.41710 Google Scholar
  24. Naveen AN, Manoj N (2016) Rheological and thermal analysis of polystyrene–kaolin nanocomposite prepared by solution intercalation technique. Procedia Technol 24:749.  https://doi.org/10.1016/j.protcy.2016.05.071 CrossRefGoogle Scholar
  25. Neves RM, Lopes KS, Zimmermann MVG, Poletto M, Zattera AJ (2019) Cellulose nanowhiskers extracted from T.E.M.P.O.-oxidized curaua fibers. J Nat Fibers.  https://doi.org/10.1080/15440478.2019.1568346 Google Scholar
  26. Oliveira AF, Gomes GJ, Oliveira AJ, Leão AL (2016) The performance of curauá fiber as sorbent of the diesel and biodiesel oils. Acta Sci Technol 38:295.  https://doi.org/10.4025/actascitechnol.v38i3.27561 CrossRefGoogle Scholar
  27. Ornaghi HL Jr, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887.  https://doi.org/10.1002/app.32388 Google Scholar
  28. Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Cleaner Prod 142:1283.  https://doi.org/10.1016/j.jclepro.2016.09.008 CrossRefGoogle Scholar
  29. Ray D, Sain S (2016) In situ processing of cellulose nanocomposites: review. Compos A 83:19.  https://doi.org/10.1016/j.compositesa.2015.09.007 CrossRefGoogle Scholar
  30. Rodrigue D, Souici S, Kabamba ET (2006) Effect of wood powder on polymer foam nucleation. J Vinyl Addit Technol 12:19.  https://doi.org/10.1002/vnl.20062 CrossRefGoogle Scholar
  31. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149.  https://doi.org/10.1016/j.conbuildmat.2015.12.075 CrossRefGoogle Scholar
  32. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822.  https://doi.org/10.1016/j.ijbiomac.2017.04.074 CrossRefGoogle Scholar
  33. Sapkota J, Kumar S, Weder C, Foster EJ (2015) Influence of processing conditions on properties of poly (vinyl acetate)/cellulose nanocrystal nanocomposites. Macromol Mater Eng 300:562.  https://doi.org/10.1002/mame.201400313 CrossRefGoogle Scholar
  34. Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Composites Part A 38:1694.  https://doi.org/10.1016/j.compositesa.2007.02.006 CrossRefGoogle Scholar
  35. Shen J, Zeng C, Lee J (2005) Synthesis of polystyrene–carbon nanofibers nanocomposite foams. Polymer 46:5218.  https://doi.org/10.1016/j.polymer.2005.04.010 CrossRefGoogle Scholar
  36. Silva RV, Aquino EMF (2007) Curaua fiber: a new alternative to polymeric composites. J Reinf Plast Compos 27:103.  https://doi.org/10.1177/0731684407079496 CrossRefGoogle Scholar
  37. Silva MC, Takahashi JA, Chaussy D, Belgacem MN, Silva GG (2010) Composites of rigid polyurethane foam and cellulose fiber residue. J Appl Polym Sci 117:3665–3672.  https://doi.org/10.1002/app.32281 Google Scholar
  38. Silva HSP, Ornaghi HL Jr, Almeida JHS Jr, Zattera AJ, Amico SC (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35:1078–1086.  https://doi.org/10.1002/pc.22755 Google Scholar
  39. Sreenivasan VS, Rajini N, Alavudeen A, Arumugaprabu V (2015) Dynamic mechanical and thermogravimetric analysis of Sansevieria cylindrica/polyester composites: effect of fiber length, fiber loading and chemical treatment. Compos B 69:76.  https://doi.org/10.1016/j.compositesb.2014.09.025 CrossRefGoogle Scholar
  40. Svagan AJ, Samir MA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater.  https://doi.org/10.1002/adma.200701215 Google Scholar
  41. Tsivintzelis I, Sanxaridou G, Pavlidou E, Panayiotou C (2016) Foaming of polymers with supercritical fluids: a thermodynamic investigation. J Supercrit Fluids 110:240.  https://doi.org/10.1016/j.supflu.2015.11.025 CrossRefGoogle Scholar
  42. Wang K, Pang Y, Wu F, Zhai W, Zheng W (2016) Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO2. J Supercrit Fluids 110:65.  https://doi.org/10.1016/j.supflu.2015.12.012 CrossRefGoogle Scholar
  43. Wielage B, Lampke T, Utschick H, Soergel F (2003) Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties. J Mater Process Technol 139:140.  https://doi.org/10.1016/S0924-0136(03)00195-X CrossRefGoogle Scholar
  44. Wong A, Mark LH, Hasan MM, Park CB (2014) The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. J Supercrit Fluids 90:35.  https://doi.org/10.1016/j.supflu.2014.03.001 CrossRefGoogle Scholar
  45. Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54:6589.  https://doi.org/10.1016/j.polymer.2013.10.011 CrossRefGoogle Scholar
  46. Zeng D, Lv J, Wei C, Yu C (2015) Dynamic mechanical properties of sisal fiber cellulose microcrystalline/unsaturated polyester in situ composites. Polym Adv Technol 26:1351.  https://doi.org/10.1002/pat.3651 CrossRefGoogle Scholar
  47. Zhang H, Rizvi GM, Park CB (2004) Development of an extrusion system for producing fine-celled HDPE/wood-fiber composite foams using CO2 as a blowing agent. Polym Adv Technol 23:263.  https://doi.org/10.1002/adv.20016 CrossRefGoogle Scholar
  48. Zhou X, Sain MM, Oksman K (2016) Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos A 83:56.  https://doi.org/10.1016/j.compositesa.2015.06.008 CrossRefGoogle Scholar
  49. Zimmermann MVG, Boakoski DG, Lavoratti A, Zattera AJ (2018) Infuence of cellulose nanofber content on the expansion of polystyrene nanocomposites expanded by supercritical CO2. Polym Bull.  https://doi.org/10.1007/s00289-018-2360-8 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Roberta Motta Neves
    • 1
    Email author
  • Kirk Silveira Lopes
    • 1
  • Matheus Vinicius Gregory Zimmermann
    • 1
  • Matheus Poletto
    • 1
  • Ademir José Zattera
    • 1
  1. 1.Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC)University of Caxias do Sul (UCS)Caxias do SulBrazil

Personalised recommendations