Advertisement

Cellulose

pp 1–15 | Cite as

Design and construction of synthetic cellulosome with three adaptor scaffoldins for cellulosic ethanol production from steam-exploded corn stover

  • S. TianEmail author
  • J. L. Du
  • Z. S. Bai
  • J. He
  • X. S. Yang
Original Research
  • 79 Downloads

Abstract

In this study, a cellulosome-producing yeast reaction system with cellulase and hemicellulase activities is developed for synergistic catalysis of steam-exploded corn stover. Three adaptor scaffoldins with divergent specificities serve to contain an extensive type and amount of catalytic subunits. The maximum ethanol concentration of engineered yeast strain was 0.92 g/l corresponding to 53.44% of the theoretical yield based on grams of ethanol produced per gram of consumed total sugar under 30 °C with agitation at 90 rpm after 96 h. Here, our elaborated structural organization presents an approach designed toward genetic engineering of S. cerevisiae, a widespread, industrially important microorganism, for improved lignocellulolytic potential and advanced capability of consolidated bioprocessing.

Keywords

Cellulosome Cellulosic ethanol Steam exploded Corn stover Engineered yeast 

Notes

Funding

This work was supported by the National Natural Science Foundation of China under Grant (No. 31570790); National Key Technology R&D Program under Grant (No. 2013BAD22B03); Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (No. 025185305000/198).

Supplementary material

10570_2019_2366_MOESM1_ESM.docx (613 kb)
Supplementary material 1 (DOCX 613 kb)

References

  1. Bansal P, Hall M, Realff MJ et al (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27(6):833–848.  https://doi.org/10.1016/j.biotechadv.2009.06.005 Google Scholar
  2. Bayer EA, Belaich JP, Shoham Y et al (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554.  https://doi.org/10.1146/annurev.micro.57.030502.091022 Google Scholar
  3. Bayer EA, Lamed R, White BA et al (2008) From cellulosomes to cellulosomics. Chem Rec 8(6):364–377.  https://doi.org/10.1002/tcr.20160 Google Scholar
  4. Chen L, Du JL, Tian S et al (2018) Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 11:1–9.  https://doi.org/10.1080/10826068.2018.1487846 Google Scholar
  5. Den HR, Mcbride JE, Van ZWH et al (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299.  https://doi.org/10.1016/j.enzmictec.2006.09.022 Google Scholar
  6. Du JL, Chen L, Tian S et al (2018) High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum). Appl Energy 215:437–443.  https://doi.org/10.1016/j.apenergy.2018.02.021 Google Scholar
  7. Fan LH, Zhang ZJ, Yu XY et al (2012) Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 109(33):13260–13265.  https://doi.org/10.1073/pnas.1209856109 Google Scholar
  8. Fierobe HP, Mechaly A, Tardif C et al (2001) Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276(24):21257–21261.  https://doi.org/10.1074/jbc.M102082200 Google Scholar
  9. Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681.  https://doi.org/10.1146/annurev-biochem-091208-085603 Google Scholar
  10. García-Alvarez B, Melero R, Dias FM et al (2011) Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 407(4):571–580.  https://doi.org/10.1016/j.jmb.2011.01.060 Google Scholar
  11. Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576.  https://doi.org/10.1111/j.1365-2958.2007.05640.x Google Scholar
  12. Gonçalves GA, Takasugi Y, Jia L et al (2015) Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme Microb Technol 72:16–24.  https://doi.org/10.1016/j.enzmictec.2015.01.007 Google Scholar
  13. Goyal G, Tsai SL, Madan B (2011) Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 1(10):89.  https://doi.org/10.1186/1475-2859-10-89 Google Scholar
  14. Hammel M, Fierobe HP, Czjzek M et al (2005) Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280(46):38562–38568.  https://doi.org/10.1074/jbc.M503168200 Google Scholar
  15. Hong W, Zhang J, Feng Y et al (2014) The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Biotechnol Biofuels 7:80.  https://doi.org/10.1186/1754-6834-7-80 Google Scholar
  16. Ilmén M, Den Haan R, Grange DC et al (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30.  https://doi.org/10.1186/1754-6834-4-30 Google Scholar
  17. Jin W, Chen L, Peng L et al (2016) Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Appl Energy 175:82–90.  https://doi.org/10.1016/j.apenergy.2016.04.104 Google Scholar
  18. Kim S, Baek S-H, Lee K et al (2013) Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14.  https://doi.org/10.1186/1475-2859-12-14 Google Scholar
  19. Kovács K, Willson BJ, Schwarz K et al (2013) Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 6:117.  https://doi.org/10.1186/1754-6834-6-117 Google Scholar
  20. Lambertz C, Garvey M, Klinger J et al (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135.  https://doi.org/10.1186/s13068-014-0135-5 Google Scholar
  21. Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836Google Scholar
  22. Li F, Zhang M, Peng L et al (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13(4):514–525.  https://doi.org/10.1111/pbi.12276 Google Scholar
  23. Mert MJ, la Grange DC, Rose SH et al (2016) Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J Ind Microbiol Biotechnol 43(4):431–440.  https://doi.org/10.1007/s10295-015-1727-1 Google Scholar
  24. Mo CL, Chen N, Tian S et al (2015) Direct ethanol production from steam-exploded corn stover using a synthetic diploid cellulase-displaying yeast consortium. BioResource 10(3):4460–4472.  https://doi.org/10.15376/biores.10.3.4460-4472 Google Scholar
  25. Prior BA, Day DF (2008) Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Appl Biochem Biotechnol 46(1–3):151–164.  https://doi.org/10.1007/s12010-007-8084-0 Google Scholar
  26. Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489.  https://doi.org/10.1126/science.1114736 Google Scholar
  27. Ravachol J, Borne R, Tardif C et al (2014) Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 289(11):7335–7348.  https://doi.org/10.1074/jbc.M113.545046 Google Scholar
  28. Ren H, Richard TL, Moore KJ (2007) The impact of enzyme characteristics on corn stover fiber degradation and acid production during ensiled storage. Appl Biochem Biotechnol 137(1–12):221–238.  https://doi.org/10.1007/s12010-007-9054-2 Google Scholar
  29. Sabathé F, Soucaille P (2003) Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 185(3):1092–1096.  https://doi.org/10.1128/JB.185.3.1092-1096.2003 Google Scholar
  30. Sakamoto T, Hasunuma T, Hori Y et al (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210.  https://doi.org/10.1016/j.jbiotec.2011.06.025 Google Scholar
  31. Smith SP, Bayer EA (2013) Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 23(5):686–694.  https://doi.org/10.1016/j.sbi.2013.09.002 Google Scholar
  32. Song HT, Gao Y, Yang YM et al (2016) Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour Technol 219:710–715.  https://doi.org/10.1016/j.biortech.2016.08.035 Google Scholar
  33. Stern J, Kahn A, Vazana Y et al (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS ONE 10(5):e0127326.  https://doi.org/10.1371/journal.pone.0127326 Google Scholar
  34. Stern J, Moraïs S, Ben-David Y et al (2018) Assembly of synthetic functional cellulosomal structures onto the cell surface of Lactobacillus plantarum, a Potent Member of the Gut Microbiome. Appl Environ Microbiol 84(8):pii:e00282-18.  https://doi.org/10.1128/AEM.00282-18 Google Scholar
  35. Szczupak A, Aizik D, Moraïs S et al (2017) The electrosome: a surface-displayed enzymatic cascade in a biofuel cell’s anode and a high-density surface-displayed biocathodic enzyme. Nanomaterials (Basel) 7(7):pii: E153.  https://doi.org/10.3390/nano7070153 Google Scholar
  36. Tang H, Wang J, Wang S et al (2018) Efficient yeast surface-display of novel complex synthetic cellulosomes. Microb Cell Fact 17(1):122.  https://doi.org/10.1186/s12934-018-0971-2 Google Scholar
  37. Tsai SL, Oh J, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75(19):6087–6093.  https://doi.org/10.1128/AEM.01538-09 Google Scholar
  38. Tsai SL, Goyal G, Chen W (2010) Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol. 76(22):7514–7520.  https://doi.org/10.1128/AEM.01777-10 Google Scholar
  39. Tsai SL, DaSilva NA, Chen W (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2(1):14–21.  https://doi.org/10.1021/sb300047u Google Scholar
  40. Vazana Y, Barak Y, Unger T et al (2013) A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 6(1):182.  https://doi.org/10.1186/1754-6834-6-182 Google Scholar
  41. Wang Z, Lv Z, Tian S et al (2014) Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover. Bioresour Technol 166:282–287.  https://doi.org/10.1016/j.biortech.2014.05.044 Google Scholar
  42. Wang Y, Fan C, Peng L et al (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34(5):997–1017.  https://doi.org/10.1016/j.biotechadv.2016.06.001 Google Scholar
  43. Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251–1260.  https://doi.org/10.1128/AEM.01687-09 Google Scholar
  44. Wen F, Sun J, Zhao H (2013) Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl Environ Microbiol 78(11):3837–3845.  https://doi.org/10.1128/AEM.07679-11 Google Scholar
  45. Wieczorek AS, Martin VJ (2012) Effects of synthetic cohesion-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis. Microb Cell Fact 15(11):160.  https://doi.org/10.1186/1475-2859-11-160 Google Scholar
  46. Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112.  https://doi.org/10.1016/0076-6879(88)60109-1 Google Scholar
  47. Xu Q, Bayer EA, Goldman M et al (2004) Architecture of the bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J Bacteriol 186(4):968–977.  https://doi.org/10.1128/JB.186.4.968-977.2004 Google Scholar
  48. Xu N, Zhang W, Peng L et al (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 11; 5(1):58.  https://doi.org/10.1186/1754-6834-5-58 Google Scholar
  49. Yamada R, Taniguchi N, Kondo A et al (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 14:32.  https://doi.org/10.1186/1475-2859-9-32 Google Scholar
  50. Zahoor TuY, Peng L et al (2017) Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresour Technol 243:319–326.  https://doi.org/10.1016/j.biortech.2017.06.111 Google Scholar
  51. Zhang J, Viikari L (2014) Impact of xylan on synergistic effects of xylanases and cellulases in enzymatic hydrolysis of lignocelluloses. Appl Biochem Biotechnol 174(4):393–1402.  https://doi.org/10.1007/s12010-014-1140-7 Google Scholar
  52. Zverlov VV, Schwarz H (2004) The clostridium thermocellum cellulosome-the paradigm of a multienzyme complex. In: Biotechnology of lignocellulose degradation and biomass utilization. Uni Pub. Co. Ltd., Tokyo, pp 137–147Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • S. Tian
    • 1
    Email author
  • J. L. Du
    • 1
  • Z. S. Bai
    • 2
  • J. He
    • 1
  • X. S. Yang
    • 1
  1. 1.College of Life ScienceCapital Normal UniversityBeijingChina
  2. 2.China Agricultural UniversityBeijingChina

Personalised recommendations