Advertisement

Cellulose

pp 1–11 | Cite as

Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol

  • Wei-Qi XieEmail author
  • Kong-Xian Yu
  • Yi-Xian Gong
Original Research
  • 59 Downloads

Abstract

In this paper, a fluorescent and antibacterial nanocomposite film based on Zinc sulphide (ZnS) quantum dots, cellulose nanocrystals (CNCs) and polyvinyl alcohol (PVA) was successfully synthesized. CNCs were first decorated in situ with ZnS quantum dots, which were then introduced into a PVA matrix to prepare nanocomposite films with good fluorescent and antibacterial properties. The X-ray diffraction and scanning electron microscope analysis indicated that ZnS nanoparticles were well-dispersed and randomly coated on the CNCs with uniform particle size. The visible emission peak in the ZnS/CNCs nanocomposites was 473 nm with an excitation wavelength of 350 nm. The CNCs loaded with ZnS quantum dots exhibited bright blue fluorescence under the ultraviolet light. Additionally, CNCs/ZnS nanocomposite films also had good antibacterial properties (bacterial inhibition rate = 78.25%).

Graphical abstract

Keywords

ZnS quantum dots Cellulose nanocrystals Fluorescent Nanocomposite film Antibacterial properties 

Notes

Acknowledgments

The authors acknowledge the financial support from the State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, China.

References

  1. Araki T, Jiu J, Nogi M, Koga H, Nagao S, Sugahara T, Suganuma K (2014) Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res 7(2):236–245CrossRefGoogle Scholar
  2. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol 99:308–318CrossRefGoogle Scholar
  3. Bruno A, Borriello C, Di Luccio T, Nenna G, Sessa L, Haque SA, Minarini C (2013) White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots. J Nanopart Res 15(11):2085CrossRefGoogle Scholar
  4. Bwatanglang IB, Mohammad F, Yusof NA, Abdullah J, Hussein MZ, Alitheen NB, Abu N (2016) Folic acid targeted Mn: ZnS quantum dots for theranostic applications of cancer cell imaging and therapy. Int J Nanomed 11:413Google Scholar
  5. Cao L, Tang F, Fang G (2014) Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells 123:183–188CrossRefGoogle Scholar
  6. Chang C, Peng J, Zhang L, Pang DW (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19(41):7771–7776CrossRefGoogle Scholar
  7. Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Synthesis and characterization of novel molecularly imprinted polymer–coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 75:213–221CrossRefGoogle Scholar
  8. Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRefGoogle Scholar
  9. Cheung CC, Giese M, Kelly JA, Hamad WY, MacLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents. ACS Macro Lett 2(11):1016–1020CrossRefGoogle Scholar
  10. Chuang PH, Lin CC, Liu RS (2014) Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl Mater Interfaces 6(17):15379–15387CrossRefGoogle Scholar
  11. Colmenares JC, Varma RS, Lisowski P (2016) Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chem 18(21):5736–5750CrossRefGoogle Scholar
  12. da Silva Souza DR, de Mesquita JP, Lago RM, Caminhas LD, Pereira FV (2016) Cellulose nanocrystals: a versatile precursor for the preparation of different carbon structures and luminescent carbon dots. Ind Crop Prod 93:121–128CrossRefGoogle Scholar
  13. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743CrossRefGoogle Scholar
  14. Doudin K, Al-Malaika S, Sheena HH, Tverezovskiy V, Fowler P (2016) New genre of antioxidants from renewable natural resources: synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins. Polym Degrad Stab 130:126–134CrossRefGoogle Scholar
  15. Dubey SP, Thakur VK, Krishnaswamy S, Abhyankar HA, Marchante V, Brighton JL (2017) Progress in environmental-friendly polymer nanocomposite material from PLA: synthesis, processing and applications. Vacuum 146:655–663CrossRefGoogle Scholar
  16. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRefGoogle Scholar
  17. Geng S, Haque MMU, Oksman K (2016) Crosslinked poly (vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): structure and mechanical properties. Compos Sci Technol 126:35–42CrossRefGoogle Scholar
  18. Gu Y, Niu T, Huang J (2010) Functional polymeric hybrid nanotubular materials derived from natural cellulose substances. J Mater Chem 20(45):10217–10223CrossRefGoogle Scholar
  19. Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohyd Polym 143:327–335CrossRefGoogle Scholar
  20. Johansson LS, Campbell JM, Fardim P, Hultén AH, Boisvert JP, Ernstsson M (2005) An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci 584(1):126–132CrossRefGoogle Scholar
  21. Lai PY, Huang CC, Chou TH, Ou KL, Chang JY (2017) Aqueous synthesis of Ag and Mn co-doped In 2 S 3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta Biomater 50:522–533CrossRefGoogle Scholar
  22. Leng Z, Huang L, Shao F, Lv Z, Li T, Gu X, Han H (2014) Facile synthesis of Cu–In–Zn–S alloyed nanocrystals with temperature-dependent photoluminescence spectra. Mater Lett 119:100–103CrossRefGoogle Scholar
  23. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74CrossRefGoogle Scholar
  24. Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohyd Polym 142:105–113CrossRefGoogle Scholar
  25. Luna-Martinez JF, Hernández-Uresti DB, Reyes-Melo ME, Guerrero-Salazar CA, González-González VA, Sepúlveda-Guzmán S (2011) Synthesis and optical characterization of ZnS–sodium carboxymethyl cellulose nanocomposite films. Carbohyd Polym 84(1):566–570CrossRefGoogle Scholar
  26. Lyons TY, Williams DN, Rosenzweig Z (2017) Addition of fluorescence lifetime spectroscopy to the tool kit used to study the formation and degradation of luminescent quantum dots in solution. Langmuir 33(12):3018–3027CrossRefGoogle Scholar
  27. Ma D, Chen W, Hu G, Zhang Y, Gao Y, Yin Y, Zhao Y (2016) K2S2O8-mediated metal-free direct P–H/C–H functionalization: a convenient route to benzo [b] phosphole oxides from unactivated alkynes. Green Chem 18(12):3522–3526CrossRefGoogle Scholar
  28. Miao C, Hamad WY (2016a) In-situ polymerized cellulose nanocrystals (CNC)—poly (l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. Carbohyd Polym 153:549–558CrossRefGoogle Scholar
  29. Miao C, Hamad WY (2016b) Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer 101:338–346CrossRefGoogle Scholar
  30. Molnes SN, Torrijos IP, Strand S, Paso KG, Syverud K (2016) Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery. Ind Crop Prod 93:152–160CrossRefGoogle Scholar
  31. Moon IK, Kim JI, Lee H, Hur K, Kim WC, Lee H (2013) 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep 3:1112CrossRefGoogle Scholar
  32. Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176–200CrossRefGoogle Scholar
  33. Niu T, Xu J, Xiao W, Huang J (2014) Cellulose-based catalytic membranes fabricated by deposition of gold nanoparticles on natural cellulose nanofibres. RSC Adv 4(10):4901–4904CrossRefGoogle Scholar
  34. Niu Y, Zhang X, He X, Zhao J, Zhang W, Lu C (2015) Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. Int J Biol Macromol 72:855–861CrossRefGoogle Scholar
  35. Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sust Energ Rev 79:558–584CrossRefGoogle Scholar
  36. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182CrossRefGoogle Scholar
  37. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158CrossRefGoogle Scholar
  38. Valentini L, Cardinali M, Fortunati E, Torre L, Kenny JM (2013) A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater Lett 105:4–7CrossRefGoogle Scholar
  39. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads–CdSe/ZnS quantum dots core–shell nanocomposite particles for cell separation. Nano Lett 4(3):409–413CrossRefGoogle Scholar
  40. Xiao FX, Miao J, Liu B (2014) Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J Am Chem Soc 136(4):1559–1569CrossRefGoogle Scholar
  41. Xue XY, Cheng R, Shi L, Ma Z, Zheng X (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15(1):23–27CrossRefGoogle Scholar
  42. Zhang D, Xiao H (2013) Dual-functional beeswaxes on enhancing antimicrobial activity and water vapor barrier property of paper. ACS Appl Mater Interfaces 5(8):3464–3468CrossRefGoogle Scholar
  43. Zhang Y, Xia J, Li C, Zhou G, Yang W, Wang D, Zheng H, Du Y, Li X, Li Q (2017) Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser. J Mater Sci 52(16):9424–9429CrossRefGoogle Scholar
  44. Zhao M, Deng C, Zhang X (2014) The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun 50(47):6228–6231CrossRefGoogle Scholar
  45. Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3(43):20816–20823CrossRefGoogle Scholar
  46. Zheng CW, Li CY, Pan J, Liu MY, Xia LL (2016) An overview of global ocean wind energy resource evaluations. Renew Sust Energy Rev 53:1240–1251CrossRefGoogle Scholar
  47. Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Health Supervision Bureau of Liaoning ProvinceShenyangChina

Personalised recommendations