Advertisement

Cellulose

pp 1–45 | Cite as

Probing cellulose structures with vibrational spectroscopy

  • Mohamadamin Makarem
  • Christopher M. Lee
  • Kabindra Kafle
  • Shixin Huang
  • Inseok Chae
  • Hui Yang
  • James D. Kubicki
  • Seong H. KimEmail author
Review Paper
  • 57 Downloads

Abstract

This paper reviews principles, data interpretations, and applications of vibrational spectroscopic methods used for analysis of cellulose in the isolated state and in plant cell walls or lignocellulose biomass. The paper begins with reviewing the crystalline structures of crystalline cellulose polymorphs and the principles of three different vibrational spectroscopy methods—infrared (IR), Raman, and sum frequency generation (SFG)—complemented with density functional theory calculations. Then, it discusses the vibrational modes of crystalline celluloses, how the chain orientation in crystalline domain is analyzed in each method, and how the concentration and spatial distribution of crystalline cellulose domains interspersed in amorphous matrices are manifested or analyzed differently in these three methods. Lastly, the paper discusses examples of analyzing crystalline cellulose in plant cell walls or lignocellulose biomass with IR, Raman, and SFG including spectroscopic imaging. One review cannot cover all vibrational spectroscopy literatures on cellulose; this review aims at providing tutorial information, using selected literatures and experimental data, needed to interpret nano-, meso-, and micro-scale structures of cellulose in plant cell walls and lignocellulose biomass.

Graphical abstract

Keywords

Cellulose structures Infrared spectroscopy Raman spectroscopy Sum frequency generation (SFG) spectroscopy Plant cell walls Lignocellulose Biomass 

Notes

Acknowledgments

This work was supported by The Center for Lignocellulose Structure and Formation, Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award Number DE-SC0001090. TD-DFT calculations of theoretical SFG spectra were from the work supported by the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-16-1-0062).

Supplementary material

10570_2018_2199_MOESM1_ESM.docx (90 kb)
Supplementary material 1 (DOCX 90 kb)
10570_2018_2199_MOESM2_ESM.avi (248 kb)
Movie S7A corresponding to 3410 cm−1 vibration mode (AVI 248 kb)
10570_2018_2199_MOESM3_ESM.avi (260 kb)
Movie S7B corresponding to 3370 cm−1 vibration mode (AVI 260 kb)
10570_2018_2199_MOESM4_ESM.avi (249 kb)
Movie S7C corresponding to 3330 cm−1 vibration mode (AVI 248 kb)
10570_2018_2199_MOESM5_ESM.avi (308 kb)
Movie S7D corresponding to 3270 cm−1 vibration mode (AVI 307 kb)
10570_2018_2199_MOESM6_ESM.avi (2.4 mb)
Movie S7E corresponding to 2944 cm−1 vibration mode (AVI 2505 kb)

Movie S7F corresponding to 2867 cm−1 vibration mode (AVI 5097 kb)

Movie S7G corresponding to 1477 cm−1 vibration mode (AVI 5146 kb)

Movie S7H corresponding to 1160 cm−1 vibration mode (AVI 2587 kb)

Movie S7I corresponding to 1098 cm−1 vibration mode (AVI 5232 kb)

Movie S7J corresponding to 710 cm−1 vibration mode (AVI 5220 kb)

Movie S7K corresponding to 380 cm−1 vibration mode (AVI 5193 kb)

Movie S7L corresponding to 93 cm−1 vibration mode (AVI 5222 kb)

References

  1. Abidi N, Manike M (2017) X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Text Res J 88:719–730CrossRefGoogle Scholar
  2. Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107:476–486CrossRefGoogle Scholar
  3. Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655CrossRefGoogle Scholar
  5. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRefGoogle Scholar
  6. Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144CrossRefGoogle Scholar
  7. Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:262–270PubMedCrossRefPubMedCentralGoogle Scholar
  8. Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francise Group, New YorkCrossRefGoogle Scholar
  9. Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796PubMedPubMedCentralCrossRefGoogle Scholar
  10. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285PubMedCrossRefPubMedCentralGoogle Scholar
  11. Atalla R, Vanderhart DL (1987) Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR. IPC technical paper series international symposium on wood and pulping chemistry in ParisGoogle Scholar
  12. Atalla RH, Whitmore RE, Heimbach CJ (1980) Raman spectral evidence for molecular orientation in native cellulosic fibers. Macromolecules 13:1717–1719CrossRefGoogle Scholar
  13. Banwell CN (1983) Fundamentals of molecular spectroscopy. Tata McGraw Hill Publishing Company, LondonGoogle Scholar
  14. Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472PubMedCrossRefPubMedCentralGoogle Scholar
  15. Barnette AL et al (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12:2434–2439CrossRefGoogle Scholar
  16. Barnette AL et al (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809PubMedCrossRefPubMedCentralGoogle Scholar
  17. Baudrier-Raybaut M, Haïdar R, Kupecek P, Lemasson P, Rosencher E (2004) Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432:374PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bishop DM, Kirtman B, Bt Champagne (1997) Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities. J Chem Phys 107:5780–5787CrossRefGoogle Scholar
  19. Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218CrossRefGoogle Scholar
  20. Blackwell J, Vasko P, Koenig J (1970) Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa. J Appl Phys 41:4375–4379CrossRefGoogle Scholar
  21. Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties. In: Cellulose-fundamental aspects and current trends. InTech, pp 159–191Google Scholar
  22. Bourmaud A, Morvan C, Bouali A, Placet V, Perre P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crops Prod 44:343–351CrossRefGoogle Scholar
  23. Boyd RW (1999) Order-of-magnitude estimates of the nonlinear optical susceptibility. J Mod Opt 46:367–378CrossRefGoogle Scholar
  24. Boyd RW (2008) Nonlinear optics. Academic Press, BurlingtonGoogle Scholar
  25. Butler HJ, McAinsh MR, Adams S, Martin FL (2015) Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal Methods 7:4059–4070CrossRefGoogle Scholar
  26. Cael J, Gardner K, Koenig J, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145–1153CrossRefGoogle Scholar
  27. Cammarata RC (1994) Surface and interface stress effects in thin films. Prog Surf Sci 46:1–38CrossRefGoogle Scholar
  28. Cammarata R, Eby R (1991) Effects and measurement of internal surface stresses in materials with ultrafine microstructures. J Mater Res 6:888–890CrossRefGoogle Scholar
  29. Chen L, Wilson RH, McCann MC (1997) Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J Mol Struct 408:257–260CrossRefGoogle Scholar
  30. Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778CrossRefGoogle Scholar
  31. Chen X, Lee CM, Wang H-F, Jensen L, Kim SH (2017) Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals. J Phys Chem C 121:18876–18886CrossRefGoogle Scholar
  32. Cho SH et al (2015) In vitro synthesis of cellulose microfibrils by membrane protein from protoplasts of the non-vascular plant Physcomitrella patens. Biochem J 470:195–205PubMedCrossRefGoogle Scholar
  33. Cintrón MS, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40CrossRefGoogle Scholar
  34. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  35. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New YorkGoogle Scholar
  37. de Beer AG, Roke S (2007) Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys Rev B 75:245438CrossRefGoogle Scholar
  38. de Beer AG, Roke S (2009) Nonlinear Mie theory for second-harmonic and sum-frequency scattering. Phys Rev B 79:155420CrossRefGoogle Scholar
  39. de Beer AG, Campen RK, Roke S (2010) Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys Rev B 82:235431CrossRefGoogle Scholar
  40. de Beer AG, Roke S, Dadap JI (2011) Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J Opt Soc Am B 28:1374–1384CrossRefGoogle Scholar
  41. Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé J-C (2010) Wood formation in Angiosperms. C R Biol 333:325–334PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401PubMedCrossRefPubMedCentralGoogle Scholar
  43. Donaldson L, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644CrossRefGoogle Scholar
  44. Fagard M et al (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform-materials analysis. InTech, Rijeka, pp 45–68Google Scholar
  46. Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203PubMedCrossRefGoogle Scholar
  47. Frisch M et al (2010) Gaussian 09, revision b. 01, Gaussian Inc, Wallingford, CT 6492Google Scholar
  48. Frisch MJ, Yamaguchi Y, Gaw JF, Schaefer HF III, Binkley JS (1986) Analytic Raman intensities from molecular electronic wave functions. J Chem Phys 84:531–532CrossRefGoogle Scholar
  49. Fujita M, Wasteneys GO (2014) A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Protoplasma 251:687–698PubMedCrossRefGoogle Scholar
  50. Fujita M et al (2013) The any1 D604N mutation in the Arabidopsis thaliana cellulose synthase 1 catalytic domain reduces cell wall crystallinity and the velocity of cellulose synthase complexes. Plant Physiol 162:74–85PubMedPubMedCentralCrossRefGoogle Scholar
  51. George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gierlinger N (2018) New insights into plant cell walls by vibrational microspectroscopy. Appl Spectrosc Rev 53:517–551PubMedCrossRefPubMedCentralGoogle Scholar
  53. Glasser WG, Northey RA, Schultz TP (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, WashingtonCrossRefGoogle Scholar
  54. Goda K, Sreekala M, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos A 37:2213–2220CrossRefGoogle Scholar
  55. Goodell B et al (2017) Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol Biofuels 10:179PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gorman M (1957) The evidence from infrared spectroscopy for hydrogen bonding: a case history of the correlation and interpretation of data. J Chem Educ 34:304CrossRefGoogle Scholar
  57. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799PubMedCrossRefPubMedCentralGoogle Scholar
  58. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell walls. Plant Physiol 115:593–598PubMedPubMedCentralCrossRefGoogle Scholar
  60. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRefPubMedCentralGoogle Scholar
  61. Handakumbura PP et al (2013) Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol 13:131PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose. Fibers Appl Spectrosc 65:1254–1259PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hill JL, Hammudi MB, Tien M (2014) The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell 26:4834–4842PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13:131–145CrossRefGoogle Scholar
  65. Hohm T et al (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751PubMedPubMedCentralCrossRefGoogle Scholar
  66. Horii F, Hirai A, Kitamaru R (1983) Solid-state 13 C-NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10:357–361CrossRefGoogle Scholar
  67. Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M, Cosgrove DJ, Kim SH (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J Phys Chem B 122:5006–5019PubMedCrossRefPubMedCentralGoogle Scholar
  68. Huang S et al (2018b) Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 197:337–348PubMedCrossRefPubMedCentralGoogle Scholar
  69. Imai T, Sugiyama J, Itoh T, Horii F (1999) Almost pure Iα cellulose in the cell wall of Glaucocystis. J Struct Biol 127:248–257PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell Environ 7:153–164Google Scholar
  71. Jarvis M (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220PubMedCrossRefPubMedCentralGoogle Scholar
  72. Johnson RD III, Irikura KK, Kacker RN, Kessel Rd (2010) Scaling factors and uncertainties for ab initio anharmonic vibrational frequencies. J Chem Theory Comput 6:2822–2828PubMedCrossRefPubMedCentralGoogle Scholar
  73. Jolliffe I (1986) Principal component analysis. Springer, New YorkCrossRefGoogle Scholar
  74. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRefGoogle Scholar
  75. Kafle K, Greeson K, Lee C, Kim SH (2014a) Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Text Res J 84:1692–1699CrossRefGoogle Scholar
  76. Kafle K et al (2014b) Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21:2219–2231CrossRefGoogle Scholar
  77. Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014c) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–1086CrossRefGoogle Scholar
  78. Kafle K, Lee CM, Shin H, Zoppe J, Johnson DK, Kim SH, Park S (2015a) Effects of delignification on crystalline cellulose in lignocellulose biomass characterized by vibrational sum frequency generation spectroscopy and X-ray diffraction. BioEnergy Res 8:1750–1758CrossRefGoogle Scholar
  79. Kafle K, Shin H, Lee CM, Park S, Kim SH (2015b) Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Sci Rep 5:15102PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kafle K, Park YB, Lee CM, Stapleton JJ, Kiemle SN, Cosgrove DJ, Kim SH (2017) Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose 24:3145–3154CrossRefGoogle Scholar
  81. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kim N-H, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromol 7:274–280CrossRefGoogle Scholar
  83. Kim HJ et al (2017) Comparative physical and chemical analyses of cotton fibers from two near isogenic upland lines differing in fiber wall thickness. Cellulose 24:2385–2401CrossRefGoogle Scholar
  84. Kim HJ, Liu Y, French AD, Lee CM, Kim SH (2018) Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers. Cellulose 25:49–64CrossRefGoogle Scholar
  85. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. John Wiley-VCH, New YorkCrossRefGoogle Scholar
  86. Kong L, Lee C, Kim SH, Ziegler GR (2014) Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J Phys Chem B 118:1775–1783PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kouyama W, Ogawa A, Li H, Miyauchi Y, Mizutani G, Sano H (2014) Sum frequency generation confocal microscopy observation of a fish scale. e-J Surf Sci Nanotechnol 12:259–262CrossRefGoogle Scholar
  88. Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23CrossRefGoogle Scholar
  89. Kumar M, Campbell L, Turner S (2015) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lambert AG, Davies PB, Neivandt DJ (2005) Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl Spectrosc Rev 40:103–145CrossRefGoogle Scholar
  91. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromol 2:410–416CrossRefGoogle Scholar
  92. Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta Biomembr 1758:814–829CrossRefGoogle Scholar
  93. Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lee CM et al (2013a) Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20:991–1000CrossRefGoogle Scholar
  95. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013b) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lee CM, Kafle K, Park YB, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lee CM, Gu J, Kafle K, Catchmark J, Kim SH (2015a) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 133:270–276PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015b) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRefGoogle Scholar
  99. Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015c) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016a) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham, pp 115–131Google Scholar
  101. Lee CM, Kafle K, Huang S, Kim SH (2016b) Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B 120:102–116PubMedCrossRefPubMedCentralGoogle Scholar
  102. Lei L et al (2014) The jiaoyao1 mutant is an allele of korrigan1 that abolishes endoglucanase activity and affects the organization of both cellulose microfibrils and microtubules in Arabidopsis. Plant Cell 26:2601–2616PubMedPubMedCentralCrossRefGoogle Scholar
  103. Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115:11533–11539CrossRefGoogle Scholar
  104. Li S et al (2016) Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants. Proc Natl Acad Sci 40:11348–11353CrossRefGoogle Scholar
  105. Li Y-H, Chen D-N, Niu H-B (2017) A method for achieving super resolution vibrational sum-frequency generation microscopy by structured illumination. IEEE Photonics J 9:1–8Google Scholar
  106. Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059Google Scholar
  107. Liu Y (2013) Recent progress in fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials 6:299–313PubMedPubMedCentralCrossRefGoogle Scholar
  108. Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ma D, Lee CM, Chen Y, Mehta N, Kim SH, Liu Z (2017) Vibrational sum frequency generation digital holography. Appl Phys Lett 110:251601CrossRefGoogle Scholar
  110. Makarem M et al (2017) Dependence of sum frequency generation (SFG) spectral features on the mesoscale arrangement of SFG-active crystalline domains interspersed in SFG-inactive matrix: a case study with cellulose in uniaxially aligned control samples and alkali-treated secondary cell walls of plants. J Phys Chem C 121:10249–10257CrossRefGoogle Scholar
  111. Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2018) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett 9:70–75PubMedCrossRefPubMedCentralGoogle Scholar
  112. Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  113. Marques MA, Gross EK (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455PubMedCrossRefPubMedCentralGoogle Scholar
  114. Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M (2008) Infrared and Raman microscopy in cell biology. Methods Cell Biol 89:275–308PubMedPubMedCentralCrossRefGoogle Scholar
  115. McCann M, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–334Google Scholar
  116. McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100:1940–1947PubMedPubMedCentralCrossRefGoogle Scholar
  117. McNamara JT, Morgan JL, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921PubMedPubMedCentralCrossRefGoogle Scholar
  118. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRefPubMedCentralGoogle Scholar
  119. Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567PubMedPubMedCentralCrossRefGoogle Scholar
  120. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedCrossRefPubMedCentralGoogle Scholar
  121. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306PubMedCrossRefPubMedCentralGoogle Scholar
  122. Nixon BT et al (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696PubMedPubMedCentralCrossRefGoogle Scholar
  123. Norris JH et al (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222PubMedPubMedCentralCrossRefGoogle Scholar
  124. Novak A (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Struct Bond (Berlin) 18:177–216CrossRefGoogle Scholar
  125. Oehme DP, Yang H, Kubicki JD (2018) An evaluation of the structures of cellulose generated by the CHARMM force field: comparisons to in planta cellulose. Cellulose 25:3755–3777CrossRefGoogle Scholar
  126. Ogawa Y, Lee CM, Nishiyama Y, Kim SH (2016) Absence of sum frequency generation in support of orthorhombic symmetry of α-Chitin. Macromolecules 49:7025–7031CrossRefGoogle Scholar
  127. Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391PubMedCrossRefPubMedCentralGoogle Scholar
  128. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943PubMedPubMedCentralCrossRefGoogle Scholar
  129. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRefGoogle Scholar
  130. Park YB, Lee CM, Koo BW, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol 163:907–913PubMedPubMedCentralCrossRefGoogle Scholar
  131. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromol 15:2718–2724CrossRefGoogle Scholar
  132. Park YB, Kafle K, Lee CM, Cosgrove DJ, Kim SH (2015) Does cellulose II exist in native alga cell walls? Cellulose structure of Derbesia cell walls studied with SFG, IR and XRD. Cellulose 22:3531–3540CrossRefGoogle Scholar
  133. Popescu C-M, Popescu M-C, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177PubMedCrossRefPubMedCentralGoogle Scholar
  134. Raghunathan V, Han Y, Korth O, Ge N-H, Potma EO (2011) Rapid vibrational imaging with sum frequency generation microscopy. Opt Lett 36:3891–3893PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reiher M, Neugebauer J, Hess BA (2003) Quantum chemical calculation of Raman intensities for large molecules: The photoisomerization of [{Fe ‘S4’(PR3)} 2 (N2H2)](‘S4’2 − = 1, 2-bis (2-mercaptophenylthio)-ethane (2 −)). Z Phys Chem 217:91–103CrossRefGoogle Scholar
  136. Rivnay J, Noriega R, Kline RJ, Salleo A, Toney MF (2011) Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys Rev B 84:045203CrossRefGoogle Scholar
  137. Robinson JW (1996) Atomic spectroscopy. Marcel Dekker Inc, New YorkGoogle Scholar
  138. Roke S, Roeterdink WG, Wijnhoven JE, Petukhov AV, Kleyn AW, Bonn M (2003) Vibrational sum frequency scattering from a submicron suspension. Phys Rev Lett 91:258302PubMedCrossRefPubMedCentralGoogle Scholar
  139. Roke S, Bonn M, Petukhov AV (2004) Nonlinear optical scattering: the concept of effective susceptibility. Phys Rev B 70:115106CrossRefGoogle Scholar
  140. Ruppin R, Englman R (1970) Optical phonons of small crystals. Rep Prog Phys 33:149CrossRefGoogle Scholar
  141. Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138PubMedCrossRefPubMedCentralGoogle Scholar
  142. Saxe F, Eder M, Benecke G, Aichmayer B, Fratzl P, Burgert I, Rüggeberg M (2014) Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 10:25PubMedPubMedCentralCrossRefGoogle Scholar
  143. Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRefGoogle Scholar
  144. Sene CF, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shen Y-R (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  146. Shen Q, Zhong L, Hu J-F (2004) Characterization of the surface properties of xylan by FT-Raman spectroscopy and wicking technique. Colloids Surf B 39:195–198CrossRefGoogle Scholar
  147. Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near infrared spectroscopy: principles, instruments, applications. Wiley, WeinheimGoogle Scholar
  148. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23:3196–3198CrossRefGoogle Scholar
  150. Suslov D, Verbelen J (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183–2192PubMedCrossRefPubMedCentralGoogle Scholar
  151. Suslov D, Verbelen JP, Vissenberg K (2009) Onion epidermis as a new model to study the control of growth anisotropy in higher plants. J Exp Bot 60:4175–4187PubMedCrossRefPubMedCentralGoogle Scholar
  152. Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106CrossRefGoogle Scholar
  153. Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42PubMedCrossRefGoogle Scholar
  154. Terashima N, Awano T, Takabe K, Yoshida M (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy. C R Biol 327:903–910PubMedCrossRefGoogle Scholar
  155. Thomas LH et al (2012) Structure of cellulose microfibrils in primary cell-walls from collenchyma. Plant Physiol 161:465–476PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ts Bučko, Tunega D, Ángyán JG, Jr Hafner (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105CrossRefGoogle Scholar
  157. Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171CrossRefGoogle Scholar
  158. Vandavasi VG et al (2016) A structural study of CESA1 catalytic domain of Arabidopsis thaliana cellulose synthesis complex: evidence for CESA trimers. Plant Physiol 170:123–135PubMedCrossRefGoogle Scholar
  159. Velarde L, Wang H-F (2013) Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J Chem Phys 139:084204PubMedCrossRefGoogle Scholar
  160. Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose I α to I β. Polym J 35:155CrossRefGoogle Scholar
  161. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391CrossRefGoogle Scholar
  162. Wang T, Hong M (2015) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wang HF, Gan W, Lu R, Rao Y, Wu BH (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24:191–256CrossRefGoogle Scholar
  164. Wang T, Zabotina O, Hong M (2012) Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856PubMedCrossRefPubMedCentralGoogle Scholar
  165. Wang H-W et al (2014a) Vibrational density of states of strongly H-bonded interfacial water: insights from inelastic neutron scattering and theory. J Phys Chem C 118:10805–10813CrossRefGoogle Scholar
  166. Wang W et al (2014b) Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis. Biotechnol Biofuels 7:57PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wang T, Park YB, Daniel JC, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis thaliana primary cell walls: evidence from solid-state NMR. Plant Physiol 168:871–884PubMedPubMedCentralCrossRefGoogle Scholar
  168. Ward I (1985) Determination of molecular orientation by spectroscopic techniques. In: Kaush HH, Zachman HG (eds) Characterization of polymers in the solid state I: Part A: NMR and other spectroscopic methods Part B: mechanical methods. Advances in polymer science, vol 66. Springer, Berlin, pp 81–115Google Scholar
  169. Watanabe A, Morita S, Ozaki Y (2007) Temperature-dependent changes in hydrogen bonds in cellulose Iα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Iβ. Biomacromol 8:2969–2975CrossRefGoogle Scholar
  170. Wickholm K, Hult E-L, Larsson PT, Iversen T, Lennholm H (2001) Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8:139–148CrossRefGoogle Scholar
  171. Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRefGoogle Scholar
  172. Wilkes GL (1971) The measurement of molecular orientation in polymeric solids. In: Fortschritte der Hochpolymeren-Forschung. Springer, Berlin, Heidelberg, pp 91–136Google Scholar
  173. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar
  174. Wilson EB (1955) Molecular vibrations: the theory of infrared and raman vibrational spectra. McGraw-Hill, New YorkGoogle Scholar
  175. Wilson RH, Smith AC, Kačuráková M, Saunders PK, Wellner N, Waldron KW (2000) The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol 124:397–406PubMedPubMedCentralCrossRefGoogle Scholar
  176. Withana-Gamage TS, Hegedus DD, Qiu X, Yu P, May T, Lydiate D, Wanasundara JP (2013) Characterization of Arabidopsis thaliana lines with altered seed storage protein profiles using synchrotron-powered FT-IR spectromicroscopy. J Agric Food Chem 61:901–912PubMedCrossRefPubMedCentralGoogle Scholar
  177. Yamaguchi Y, Frisch M, Gaw J, Schaefer HF III, Binkley JS (1986) Analytic evaluation and basis set dependence of intensities of infrared spectra. J Chem Phys 84:2262–2278CrossRefGoogle Scholar
  178. Ye D et al (2018) Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls. Sci Rep 8:12449PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yongliang L, Thibodeaux D, Gamble G (2011) Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Text Res J 81:1559–1567CrossRefGoogle Scholar
  180. Zeng Y, Yarbrough JM, Mittal A, Tucker MP, Vinzant TB, Decker SR, Himmel ME (2016) In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. Biotechnol Biofuels 9:256PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2013) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862CrossRefGoogle Scholar
  182. Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhang T, Vavylonis D, Durachko DM, Cosgrove DJ (2017) Nanoscale movements of cellulose microfibrils in primary cell walls. Nat plants 3:17056PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zheng Y, Cosgrove DJ, Ning G (2017) High-resolution field emission scanning electron microscopy (FESEM) imaging of cellulose microfibril organization in plant primary cell walls. Microsc Microanal 23:1048–1054PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhong R, Burk DH, Morrison WH, Ye Z-H (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of BiologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Geological SciencesUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations