pp 1–41 | Cite as

Cellulose II aerogels: a review

  • Tatiana BudtovaEmail author
Review Paper


Cellulose II aerogels are light-weight, open pores materials with high specific surface area. They are made in the same way as bio-aerogels based on other polysaccharides, via dissolution-(gelation)-solvent exchange-drying with supercritical CO2. Gelation step is often omitted as cellulose allows keeping 3D shape during solvent exchange (which leads to cellulose coagulation) and drying. Drying in supercritical conditions preserves the porosity of “wet” (coagulated) cellulose. There are numerous ways to vary cellulose II aerogel morphology and properties by changing processing conditions and cellulose type. Together with chemical and physical modifications of cellulose and possibility of making hybrid and composite materials (organic–inorganic and organic–organic), it opens up a huge variety of aerogel properties and applications. On one hand, they are similar to those of classical aerogels, i.e. can be used for absorption and adsorption, as catalysts and catalysts support and in electro-chemistry when pyrolysed. On the other hand, because the preparation of cellulose aerogels may not involve any toxic compounds, they can be used in life science applications such as pharma, bio-medical, food and cosmetics. The review makes an overview of results reported in literature on the structure and properties of cellulose II aerogels and their applications. The reader may be surprised finding more questions than answers and clear trends. The review shows that several fundamental questions still remain to be answered and applications to be explored.


Cellulose Aerogel Density Structure Surface area Mechanical properties 



I would like to devote this review and warmly thank my PhD and Master students and post-doctoral researchers without whom the progress in bio-aerogels in general and this article in particular would not have been possible.

Supplementary material

10570_2018_2189_MOESM1_ESM.pdf (292 kb)
Supplementary material 1 (PDF 292 kb)


  1. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  2. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New YorkCrossRefGoogle Scholar
  3. Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354:4556–4561CrossRefGoogle Scholar
  4. Bakierska M, Molenda M, Majda D, Dziembaj R (2014) Functional starch based carbon aerogels for energy applications. Proc Eng 98:14–19CrossRefGoogle Scholar
  5. Biener J, Stadermann M, Suss M, Worsley MA, Biener MM, Rose KA, Baumann TF (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667CrossRefGoogle Scholar
  6. Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non Cryst Solids 225:36–40CrossRefGoogle Scholar
  7. Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose–NMMO–water solutions. Biomacromolecules 6:1948–1953PubMedCrossRefPubMedCentralGoogle Scholar
  8. Borisova A, De Bruyn M, Budarin VL, Shuttleworth PS, Dodson Mateus JR, Segatto L, Clark JH (2015) A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromol Rapid Commun 36:774–779PubMedCrossRefPubMedCentralGoogle Scholar
  9. Buchtova N, Budtova T (2016) Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595CrossRefGoogle Scholar
  10. Budarin V, Clark JH, Hardy JJA, Luque R, Milkowski K, Tavener SJ, Wilson AJ (2006) Starbons: new starch-derived mesoporous carbonaceous materials with tunable properties. Angew Chem Int Ed 45:3782–3786CrossRefGoogle Scholar
  11. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRefGoogle Scholar
  12. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRefGoogle Scholar
  15. Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRefGoogle Scholar
  17. Cervin NT, Andersson L, Ng JBS, Olin P, Bergström L, Wågberg L (2013) Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules 14:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chin SF, Romainor ANB, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243CrossRefGoogle Scholar
  19. Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F et al (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem Int E. 48(32):5916–5920CrossRefGoogle Scholar
  20. Cross J, Goswin R, Gerlach R, Fricke J (1989) Mechanical properties of SiO2–aerogels. Revue de physique appliquée, Colloque c4, Supplement au n° 4, tome 24, c4-184-c4-195Google Scholar
  21. Cui S, Wang X, Zhang X, Xia W, Tang X, Lin B, Qi W, Zhang X, Shen X (2018) Preparation of magnetic MnFe2O4-cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption. Cellulose 25:735–751CrossRefGoogle Scholar
  22. De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P (2016) Prilling and supercritical drying: a successful duo to producecore-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym 147:482–489PubMedCrossRefPubMedCentralGoogle Scholar
  23. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRefGoogle Scholar
  24. De Oliveira W, Glasser WG (1996) Hydrogels from polysaccharides. 1. Cellulose beads for chromatographic support. J Appl Polym Sci 60:63–73CrossRefGoogle Scholar
  25. Demilecamps A (2015) Synthesis and characterization of polysaccharide-silica composite aerogels for thermal superinsulation. PhD thesis, Mines ParisTech, FranceGoogle Scholar
  26. Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636CrossRefGoogle Scholar
  27. Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogel. Carbohydr Polym 122:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  28. Demilecamps A, Alves M, Rigacci A, Reichenauer G, Budtova T (2016) Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties. J Non Cryst Solids 452:259–265CrossRefGoogle Scholar
  29. Diascorn N, Calas S, Sallée H, Achard P, Rigacci A (2015) Polyurethane aerogels synthesis for thermal insulation–textural, thermal and mechanical properties. J Supercrit Fluids 106:76–84CrossRefGoogle Scholar
  30. Druel L, Bardl R, Vorwerg W, Budtova T (2017) Starch aerogels: a member of the family of thermal superinsulating materials. Biomacromolecules 18:4232–4239PubMedCrossRefPubMedCentralGoogle Scholar
  31. Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002CrossRefGoogle Scholar
  32. Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose-sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287PubMedCrossRefGoogle Scholar
  33. Escudero RR, Robitzer M, Di Renzo F, Quignard F (2009) Alginate aerogels as adsorbents of polar molecules from liquid hydrocarbons: hexanol as probe molecule. Carbohydr Polym 75:52–57CrossRefGoogle Scholar
  34. Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRefGoogle Scholar
  35. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  36. Firgo H, Rüf H, Hainbucher KM, Weber H (2004) Method for the production of a porous cellulose body. WO/2004/065424Google Scholar
  37. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRefGoogle Scholar
  38. Fumagalli M, Ouhab D, Molina Boisseau S, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255PubMedCrossRefGoogle Scholar
  39. Fumagalli M, Sanchez F, Molina-Boisseau S, Heux L (2015) Surface-restricted modification of nanocellulose aerogels in gas-phase esterification by di-functional fatty acid reagents. Cellulose 22:1451–1457CrossRefGoogle Scholar
  40. Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355CrossRefGoogle Scholar
  41. Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B (2018) Review on the production of polysaccharide aerogel particles. Materials 11:2144–2181PubMedCentralCrossRefPubMedGoogle Scholar
  42. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  43. García-González CA, Uy JJ, Alnaief M, Smirnova I (2012) Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym 88:1378–1386CrossRefGoogle Scholar
  44. Gavillon R (2007) Preparation et caracterisation de materiaux cellulosiques ultra poreux. PhD Thesis. Mines ParisTech, FranceGoogle Scholar
  45. Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432PubMedCrossRefGoogle Scholar
  46. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277PubMedCrossRefGoogle Scholar
  47. Geng H (2018) Preparation and characterization of cellulose/N,N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels. Carbohydr Polym 196:289–298PubMedCrossRefGoogle Scholar
  48. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836PubMedCrossRefGoogle Scholar
  49. Gibson LJ, Ashby MF (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Glenn GM, Irving DW (1995) Starch-based microcellular foams. Cereal Chem 72:155–161Google Scholar
  51. Goimil L, Braga MEM, Dias AMA, Gómez-Amoza JL, Concheiro A, Alvarez-Lorenzo C, de Sousa HC, García-González CA (2017) Supercritical processing of starch aerogels and aerogel-loaded poly(e-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J CO2 Util 18:237–249CrossRefGoogle Scholar
  52. Groult S, Budtova T (2018a) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81PubMedCrossRefGoogle Scholar
  53. Groult S, Budtova T (2018b) Tuning structure and properties of pectin aerogels. Eur Polym J 108:250–261CrossRefGoogle Scholar
  54. Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis. J Power Sources 185:717–726CrossRefGoogle Scholar
  55. Guizard C, Leloup J, Deville S (2014) Crystal templating with mutually miscible solvents: a simple path to hierarchical porosity. J Am Ceram Soc 97:2020–2023CrossRefGoogle Scholar
  56. Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, DamionRA Budtova T, Ries ME (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  58. Hedlund A, Kohnke T, Theliander H (2017) Diffusion in ionic liquid–cellulose solutions during coagulation in water: mass transport and coagulation rate measurements. Macromolecules 50:8707–8719CrossRefGoogle Scholar
  59. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRefGoogle Scholar
  60. Horvat G, Xhanari K, Finsgar M, Gradisnik L, Maver U, Knez Z, Novak Z (2017) Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr Polym 166:365–376PubMedCrossRefGoogle Scholar
  61. Hu Y, Tong X, Zhuo H, Zhong L, Peng W, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6:15788–15795CrossRefGoogle Scholar
  62. Hwang K, Kwon G-J, Yang J, Kim M, Hwang WJ, Youe W, Kim D-Y (2018) Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption. Materials 11:562–581PubMedCentralCrossRefPubMedGoogle Scholar
  63. Innerlohinger J, Weber HK, Kraft G (2006a) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  64. Innerlohinger J, Weber HK, Kraft G (2006b) Aerocell Aerogels from cellulosic materials. Lenzing Ber 86:137–143Google Scholar
  65. Ishida O, Kim D-Y, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRefGoogle Scholar
  66. IUPAC (2014) Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. Last update 2014-02-24; version: 2.3.3
  67. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jin H, Nishiyama T, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240:63–67CrossRefGoogle Scholar
  69. Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114CrossRefGoogle Scholar
  70. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chem Mater 18:85–296CrossRefGoogle Scholar
  71. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRefGoogle Scholar
  72. Kistler SS (1931) Coherent expanded aerogels and gellies. Nature 127(3211):741CrossRefGoogle Scholar
  73. Knez Z, Markocic E, Leitgeb M, Primozic M, Hrncic MK, Skerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243CrossRefGoogle Scholar
  74. Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew Chem Int Ed 53:10394–10397CrossRefGoogle Scholar
  75. Köhnke T, Lund K, Brelid H, Westman G (2010) Kraft pulp hornification: a closer look at the preventive effect gained by glucuronoxylan adsorption. Carbohydr Polym 81:226–233CrossRefGoogle Scholar
  76. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl Mater Interfaces 3:1813–1816PubMedCrossRefGoogle Scholar
  77. Laity PR, Glover PM, Hay JN (2002) Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer 43:5827–5837CrossRefGoogle Scholar
  78. Laskowski J, Milow B, Ratke L (2015) The effect of embedding highly insulating granular aerogel incellulosic aerogel. J Supercrit Fluids 106:93–99CrossRefGoogle Scholar
  79. Lavoine N, Bergstrom L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5:16105–16117CrossRefGoogle Scholar
  80. Lei E, Li W, Ma C, Liu S (2018) An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater Chem Phys 214:291–296CrossRefGoogle Scholar
  81. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960CrossRefGoogle Scholar
  82. Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817CrossRefGoogle Scholar
  83. Liang H-W, Wu Z-Y, Chen L-F, Li C, Yu S-H (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376CrossRefGoogle Scholar
  84. Liao Q, Su X, Zhu W, Hu W, Qian Z, Li L, Yao J (2016) Flexible and durable cellulose aerogels for highly effective oil/water separation. RSC Adv 6:63773–63781CrossRefGoogle Scholar
  85. Liebert T (2010) Cellulose solvents – remarkable history, bright future. In: Liebert et al (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series. American Chemical Society, WashingtonGoogle Scholar
  86. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135CrossRefGoogle Scholar
  87. Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze MA (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11CrossRefGoogle Scholar
  88. Liebner F, Dunareanu R, Opietnik M, Haimer E, Wendland M, Werner C, Maitz M, Seib P, Neouze M-A, Potthast A, Rosenau T (2012) Shaped hemocompatible aerogels from cellulose phosphates: preparation and properties. Holzforschung 66:317–321CrossRefGoogle Scholar
  89. Liebner F, Pircher N, Schimper C, Haimer E, Rosenau T (2016) Aerogels: cellulose-based. In: Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor and Francis, New York, pp 37–75Google Scholar
  90. Lin C, Zhan H, Liu M, Fu S, Lucia LA (2009a) Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. Langmuir 25:10116–10120PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009b) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107CrossRefGoogle Scholar
  92. Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:82027–82033CrossRefGoogle Scholar
  93. Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149CrossRefGoogle Scholar
  94. Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose 18:911–920CrossRefGoogle Scholar
  95. Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surf A Physicochem Eng Asp 439:159–166CrossRefGoogle Scholar
  96. Liu P, Borrell PF, Bozic M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lozinsky VI, Galaev IYu, PlievaFM Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lozinsky VI, Damshkaln LG, Bloch KO, Vardi P, Grinberg NV, Burova TV, Grinberg VY (2008) Cryostructuring of polymer systems. XXIX. Preparation and characterization of supermacroporous (spongy) agarose-based cryogels used as three-dimensional scaffolds for culturing insulin-producing cell aggregates. J Appl Polym Sci 108:3046–3062CrossRefGoogle Scholar
  99. Lu X, Arduini-Schuster MC, Kuhn J, Njilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808PubMedCrossRefPubMedCentralGoogle Scholar
  101. Luo X, Zhang L (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J Chromatogr A 1217:5922–5929PubMedCrossRefPubMedCentralGoogle Scholar
  102. Lv L, Fan Y, Chen Q, Zhao Y, Hu Y, Zhang Z, Chen N, Qu L (2014) Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 25:235401PubMedCrossRefPubMedCentralGoogle Scholar
  103. Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mäki-Arvelaa P, Anugwoma I, Virtanena P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRefGoogle Scholar
  105. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118CrossRefGoogle Scholar
  106. Maleki H, Duraes L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74CrossRefGoogle Scholar
  107. Markevicius G, Ladj R, Niemeyer P, Budtova T, Rigacci A (2017) Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J Mater Sci 52:2210–2221CrossRefGoogle Scholar
  108. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159CrossRefGoogle Scholar
  109. Martoïa F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391CrossRefGoogle Scholar
  110. Meador MAB, Alemn CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249PubMedCrossRefPubMedCentralGoogle Scholar
  111. Meador MAB, Agnello M, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8:29073–29079PubMedCrossRefPubMedCentralGoogle Scholar
  112. Meng Y, Young TM, LiuP ContescuCI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRefGoogle Scholar
  113. Mi Q-Y, Ma S-R, Yu J, He J-S, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRefGoogle Scholar
  114. Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201CrossRefGoogle Scholar
  115. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19:6138–6144CrossRefGoogle Scholar
  116. Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8:2732–2740PubMedCrossRefGoogle Scholar
  117. Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134CrossRefGoogle Scholar
  118. Nyström G, Fernández-Ronco MP, Bolisetty S, Mazzotti M, Mezzenga R (2016) Amyloid templated gold aerogels. Adv Mater 28:472–478PubMedCrossRefPubMedCentralGoogle Scholar
  119. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRefGoogle Scholar
  120. Olsson RT, Samir MASA, Salazar-Alvarez G, Belova L, LA StromV Berglund, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588PubMedCrossRefPubMedCentralGoogle Scholar
  121. Ookuna S, Igarashi K, Hara M, Aso K, Yoshidone H, Nakayama H, Suzuki K, Nakajima K (1993) Porous ion-exchanged fine cellulose particles, method for production thereof, and affinity carrier. USOO5196527AGoogle Scholar
  122. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRefGoogle Scholar
  123. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125:67–75CrossRefGoogle Scholar
  124. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non Cryst Solids 188:34–40CrossRefGoogle Scholar
  125. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer CT, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRefGoogle Scholar
  126. Pierre AC (2011) History of aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831Google Scholar
  127. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728PubMedCrossRefPubMedCentralGoogle Scholar
  128. Pinnow M, Fink HP, Fanter C, Kunze J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRefGoogle Scholar
  129. Pircher N, Fischhuber D, Carbajal L, Strau C, Nedelec J-M, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300:911–924PubMedPubMedCentralCrossRefGoogle Scholar
  130. Pircher N, Carbajal L, Schimper C, Bacher M, Rennhofer H, Nedelec J-M, Lichtenegger HC, Rosenau T, Liebner F (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966PubMedPubMedCentralCrossRefGoogle Scholar
  131. Plappert SF, Nedelec J-M, Rennhofer H, Lichtenegger HC, Liebner FW (2017) Strain hardening and pore size harmonization by uniaxial densification: a facile approach toward superinsulating aerogels from nematic nanofibrillated 2,3-dicarboxyl cellulose. Chem Mater 29:6630–6641CrossRefGoogle Scholar
  132. Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50:4526–4535CrossRefGoogle Scholar
  133. Quignard F, Valentin R, Di Renzo F (2008) Aerogel materials from marine polysaccharides. New J Chem 32:1300–1310CrossRefGoogle Scholar
  134. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds fortissue engineering. J Supercrit Fluids 105:1–8CrossRefGoogle Scholar
  135. Raman SP, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J Supercrit Fluids 106:23–33CrossRefGoogle Scholar
  136. Rege A, Schestakow M, Karadagli I, Ratke L, Itskov M (2016) Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. Soft Matter 12:7079–7088PubMedCrossRefGoogle Scholar
  137. Rein DM, Cohen Y (2011) Aeropolysaccharides, composites and preparation thereof. EP 2 354 165 A1Google Scholar
  138. Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140:9–16CrossRefGoogle Scholar
  139. Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158:B779–B789CrossRefGoogle Scholar
  140. Rooke J, Sescousse R, Budtova T, Berthon-fabry S, Simon B, Chatenet M (2012) Cellulose-based nanostructured carbons for energy conversion and storage devices. In: Rufford T, Hulicova-Jurcakova D, Zhu J (eds) Green carbon materials: advances and applications. Pan Stanford Publishing Pte Ltd, Singapore, pp 89–111Google Scholar
  141. Rosenberg P, Suominen I, Rom M, Janicki J, Fardim P (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254Google Scholar
  142. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264PubMedCrossRefGoogle Scholar
  143. Rudaz C (2013) Cellulose and pectin aerogels: towards their nano-structuration. PhD thesis, MINES ParisTechGoogle Scholar
  144. Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromolecules 15:2188–2195PubMedCrossRefGoogle Scholar
  145. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381PubMedCrossRefGoogle Scholar
  146. Schestakow M, Karadagli I, Ratke L (2016a) Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr Polym 137:642–649PubMedCrossRefGoogle Scholar
  147. Schestakow M, Muench F, Reimuth C, Ratke L, Ensinger W (2016b) Electroless synthesis of cellulose–metal aerogel composites. Appl Phys Lett 108:213108CrossRefGoogle Scholar
  148. Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermalsuper-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644PubMedCrossRefPubMedCentralGoogle Scholar
  150. Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382CrossRefGoogle Scholar
  151. Sescousse R (2010) Nouveaux matériaux cellulosiques ultra-poreux et leurs carbones à partir de solvants verts. PhD thesis, Mines ParisTech, FranceGoogle Scholar
  152. Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426CrossRefGoogle Scholar
  153. Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose 17:1137–1146CrossRefGoogle Scholar
  154. Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  155. Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765CrossRefGoogle Scholar
  156. Shen J, Guan DY (2011) Preparation and application of carbon aerogels. In: Aegerter MA et al (eds) Aerogels handbook, advances in sol–gel derived materials and technologies. Springer, New York, pp 813–831Google Scholar
  157. Shi J, Lu L, Guo W, Sun Y, Cao Y (2013a) An environment-friendly thermal insulation material from cellulose and plasma modification. J Appl Polym Sci 130:3652–3658CrossRefGoogle Scholar
  158. Shi J, Lu L, Guo W, Zhang J, Cao Y (2013b) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289PubMedCrossRefGoogle Scholar
  159. Shi Z, Huang J, Liu C, Ding B, Kuga S, Cai J, Zhang L (2015) Three-dimensional nanoporous cellulose gels as a flexible reinforcement matrix for polymer nanocomposites. ACS Appl Mater Interfaces 7:22990–22998PubMedCrossRefGoogle Scholar
  160. Sorensen L, Strouse GF, Stiegman AE (2006) Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots. Adv Mater 18:1965–1967CrossRefGoogle Scholar
  161. Svensson A, Larsson PT, Salazar-Alvarez G, Wågberg L (2013) Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr Polym 92:775–783PubMedCrossRefGoogle Scholar
  162. Tan C, Fung B, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646CrossRefGoogle Scholar
  163. Teichner SJ (1986) Aerogels of inorganic oxides. In: Frick J (ed) Aerogels, Springer proceedings in physics 6, proceedings of the first international symposium, Worzburg, Fed. Republic of Germany, September 23–25. 1985 Springer, Heidelberg, pp 22–30Google Scholar
  164. Tejado A, Chen WC, Alam MN, van de Ven TGM (2014) Superhydrophobic foam-like cellulose made of hydrophobized cellulose fibres. Cellulose 21:1735–1743Google Scholar
  165. Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299PubMedCrossRefGoogle Scholar
  166. Trygg J, Yildir E, Kolakovic R, Sandler N, Fardim P (2014) Anionic cellulose beads for drug encapsulation and release. Cellulose 21:1945–1955CrossRefGoogle Scholar
  167. Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971CrossRefGoogle Scholar
  168. Veronovski A, Tkalec G, Knez Z, Novak Z (2014) Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr Polym 113:272–278PubMedCrossRefGoogle Scholar
  169. Voon LK, Pang SC, Chin SF (2016) Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Mater Lett 164:264–266CrossRefGoogle Scholar
  170. Voon LK, Pang SC, Chin SF (2017) Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. J Chem 2017:1–11CrossRefGoogle Scholar
  171. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRefGoogle Scholar
  172. Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399CrossRefGoogle Scholar
  173. Wang H, Shao Z, Bacher M, Liebner F, Rosenau T (2013a) Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)12x/ZnS (core/shell) quantum dots. Cellulose 20:3007–3024PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wang R, Li G, Dong Y, Chi Y, Chen G (2013b) Carbon quantum dot-functionalized aerogels for NO2 gas sensing. Anal Chem 85:8065–8069PubMedCrossRefGoogle Scholar
  175. Wang H, Gong Y, Wang Y (2014a) Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Adv 4:45753–45759CrossRefGoogle Scholar
  176. Wang L, Schutz C, Salazar-Alvarez G, Titirici M-M (2014b) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4:17549–17554CrossRefGoogle Scholar
  177. Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78CrossRefGoogle Scholar
  178. White RJ, Budarin V, Luque R, Clark JH, Macquarrie DJ (2009) Tuneable porous carbonaceous materials from renewable resources. Chem Soc Rev 38:3401–3418PubMedCrossRefPubMedCentralGoogle Scholar
  179. White RJ, Antonio C, Budarin VL, Bergstrom E, Thomas-Oates J, Clark JH (2010a) Polysaccharide-derived carbons for polar analyte separations. Adv Funct Mater 20:1834–1841CrossRefGoogle Scholar
  180. White RJ, Budarin VL, Clark JH (2010b) Pectin-derived porous materials. Chem Eur J 16:1326–1335PubMedCrossRefPubMedCentralGoogle Scholar
  181. Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater 183:23–29CrossRefGoogle Scholar
  182. Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085PubMedCrossRefPubMedCentralGoogle Scholar
  183. Wu Z-Y, Li C, Liang H-W, Chen J-F, Yu S-H (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem 125:2997–3001CrossRefGoogle Scholar
  184. Yang X, Fei B, Ma J, Liu X, Yang S, Tian G, Jiang Z (2018) Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydr Polym 180:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and Flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRefGoogle Scholar
  186. Zhang H, Li Y, Xu Y, Lu Z, Chen L, Huang L, Fan M (2016) Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Phys Chem Chem Phys 18:28297–28306PubMedCrossRefPubMedCentralGoogle Scholar
  187. Zhang M, Dou M, Wang M, Yu Y (2017) Study on the solubility parameter of supercritical carbon dioxide system by molecular dynamics simulation. J Mol Liq 248:322–329CrossRefGoogle Scholar
  188. Zhang DY, Zhang N, Song P, Hao JY, Wan Y, Yao XH, Chen T, Li L (2018) Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnate. Carbohydr Polym 181:560–569PubMedCrossRefPubMedCentralGoogle Scholar
  189. Zhou S, Chen G, Feng X, Wang M, Song T, Liu D, Lu F, Qi H (2018) In situ MnOx/N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chem 20:3593–3603CrossRefGoogle Scholar
  190. Zhuo H, Hu Y, Tong X, Zhong L, Peng W, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose forhigh-performance supercapacitor and CO2 capture. Ind Crops Prod 87:229–235CrossRefGoogle Scholar
  191. Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center for Materials Forming (CEMEF), UMR CNRS 7635MINES ParisTech, PSL Research UniversitySophia AntipolisFrance

Personalised recommendations