, Volume 26, Issue 3, pp 1479–1487 | Cite as

Preparation of oxidized celluloses in a NaBr/NaClO system using 2-azaadamantane N-oxyl (AZADO) derivatives in water at pH 10

  • Hiromasa Hondo
  • Tsuguyuki Saito
  • Akira IsogaiEmail author
Original Research


Catalytic oxidation using N-oxyl radicals in water at pH 10 was applied to wood cellulose to determine the influence of different N-oxyl radical chemical structures on the reaction kinetics and structures of oxidized celluloses. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 2-azaadamantane N-oxyl (AZADO), 1-methyl-AZADO (1-Me-AZADO), 9-azanoradamantane N-oxyl (Nor-AZADO), and 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO) were used as oxidation catalysts in a NaBr/NaClO system in water at room temperature and pH 10. The reaction time required for complete oxidation of wood cellulose by 5 mmol/g of NaClO using AZADO, 1-Me-AZADO, or Nor-AZADO was less than 20 min, while DMN-AZADO and TEMPO required 70 min and 120 min, respectively. The sodium carboxylate contents of the oxidized celluloses prepared using TEMPO and DMN-AZADO were 1.41 and 1.45 mmol/g, respectively, which were higher than those of oxidized celluloses prepared using other AZADO derivatives. The original cellulose I crystal structure, crystallinity, and crystal size of wood cellulose were mostly maintained in all oxidized celluloses, with oxidation selectively occurring at C6–OH groups on the crystalline cellulose microfibril surfaces. Oxidized celluloses prepared using DMN-AZADO and post-reduced with NaBH4 showed high carboxylate contents of ~ 1.41 mmol/g and the heist viscosity-average degrees of polymerization of ~ 800.

Graphical abstract


TEMPO AZADO derivatives Oxidized cellulose Kinetics Carboxylate content Degree of polymerization 



This research was supported by Core Research for Evolutional Science and Technology (CREST, Grant Number JPMJCR13B2) of the Japan Science and Technology Agency (JST). We thank Simon Partridge, Ph.D., from Edanz Group ( for editing a draft of this manuscript.

Supplementary material

10570_2018_2177_MOESM1_ESM.docx (176 kb)
Supplementary material 1 (DOCX 175 kb)


  1. Battista QA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507CrossRefGoogle Scholar
  2. Coseri S (2017) Cellulose: to depolymerize… or not to? Biotechnol Adv 35:251–266CrossRefGoogle Scholar
  3. de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269:89–98CrossRefGoogle Scholar
  4. Doi R, Shibuya M, Murayama T, Yamamoto Y, Iwabuchi Y (2015) Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols. J Org Chem 80:401–413CrossRefGoogle Scholar
  5. Einfeldt L, Günther W, Klemm D, Heublein B (2005) Peracetylated cellulose: end group modification and structural analysis by means of 1H-NMR spectroscopy. Cellulose 12:15–24CrossRefGoogle Scholar
  6. Funahashi R, Ono Y, Tanaka R, Yokoi M, Daido K, Inamochi T, Saito T, Horikawa Y, Isogai A (2018) Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: formation mechanism of disordered regions along each cellulose microfibril. Int J Biol Macromol 109:914–920CrossRefGoogle Scholar
  7. Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183CrossRefGoogle Scholar
  8. Hayashi M, Sasano Y, Nagasawa S (2011) 9-Azanoradamantane N-oxyl (Nor-AZADO): a highly active organocatalyst for alcohol oxidation. Chem Pharm Bull 59:1570–1573CrossRefGoogle Scholar
  9. Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672CrossRefGoogle Scholar
  10. Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575CrossRefGoogle Scholar
  11. Inamochi T, FunahashiR NY, Saito T, Isogai A (2017) Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose. Cellulose 24:4097–4101CrossRefGoogle Scholar
  12. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459CrossRefGoogle Scholar
  13. Isogai A, Bergström L (2018) Preparation of cellulose nanofibers using green and sustainable chemistry. Curr Opin Green Sustain Chem 12:15–21CrossRefGoogle Scholar
  14. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  15. Isogai A, Hänninen T, Fujisawa S, Saito T (2018) Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 86:122–148CrossRefGoogle Scholar
  16. Iwabuchi Y (2008) Exploration and exploitation of synthetic use of oxoammonium ions in alcohol oxidation. J Synth Org Chem Jpn 66:1076–1084CrossRefGoogle Scholar
  17. Iwabuchi Y (2013) Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation. Chem Pharm Bull 61:1197–1213CrossRefGoogle Scholar
  18. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95:1394–1398CrossRefGoogle Scholar
  19. Potthast A, Schiehser S, Rosenau T (2009) Oxidative modifications of cellulose in the periodate system—reduction and beta-elimination reactions. Holzforschung 63:12–17CrossRefGoogle Scholar
  20. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  21. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  22. Sang X, Qin C, Tong Z, Kong S, Jia Z, Wan G, Liu X (2017) Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system. Cellulose 24:2415–2425CrossRefGoogle Scholar
  23. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158CrossRefGoogle Scholar
  24. Shibuya M, Tomizawa M, Suzuki I, Iwabuchi Y (2006) 2-Azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols. J Am Chem Soc 128:8412–8413CrossRefGoogle Scholar
  25. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRefGoogle Scholar
  26. Takaichi S, Isogai A (2013) Oxidation of wood cellulose using 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO catalyst in NaBr/NaClO system. Cellulose 20:1979–1988CrossRefGoogle Scholar
  27. Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51:228–234CrossRefGoogle Scholar
  28. Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules 19:633–639CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biomaterial SciencesThe University of TokyoBunkyo-kuJapan

Personalised recommendations