, Volume 26, Issue 3, pp 2013–2033 | Cite as

Modelling considerations for the degradation of cellulosic paper

  • J. Tétreault
  • P. Bégin
  • S. Paris-Lacombe
  • A.-L. DupontEmail author
Original Research


The aim of this research was to design a model for simulating the degradation of paper in various environmental conditions by taking into consideration all the parameters (exogenous and endogenous) that influence the overall process of the acid catalyzed hydrolysis of cellulose. Three kinetic equations (Ekenstam, Calvini, and Ding and Wang) for determining the degradation rate coefficient (k) were compared. For this purpose, previously published and new experimental data on the degradation of pure and unsized cotton linter papers (neutral and acidic) upon ageing were used. The frequency factor parameter (A) in the Arrhenius formula was adjusted with additional input factors in the expression of A proposed by Zou et al. (Cellulose 3:243–267, 1996a). The model takes into account the increase of the acidity and the decrease of the moisture content induced during paper degradation. Besides the temperature and humidity, external gaseous pollutants (NO2, formic and acetic acids) were also taken into account as degradation factors. The model can be used to simulate cellulose depolymerisation of cotton papers exposed to single pollutants, but reached a limit for simulating with confidence the degradation of papers exposed simultaneously to multiple volatile compounds, due to the lack of available data, especially concerning certain volatile compounds counter-degradation effects. Future adjustments can be done when more experimental data becomes available.


Cellulose Degradation Hydrolysis Environment Modelling Degree of polymerization 



The authors are very grateful to Valérie Dupont for her insightful contribution and to Jane Sirois for helpful advice and comments during the editing of this paper.

Supplementary material

10570_2018_2156_MOESM1_ESM.pdf (380 kb)
Supplementary material 1 (PDF 381 kb)


  1. Atalla RH, Isogai A (2005) Recent developments in spectroscopic and chemical characterization of cellulose. In: Dumitriu S (ed) Polysaccharides; structural diversity and functional versatility, 2nd edn. Marcel Dekker, NY, pp 123–157Google Scholar
  2. Atherton JB, Lyth Hudson F, Hockey JA (1973) The effect of temperature, light and some transitional metal ion on the sorption of sulphur dioxide by paper. J Appl Chem Biotechnol 23:407–414Google Scholar
  3. Barrow WJ, Sproull RC (1959) Permanence in book papers. Science 129:1075–1083Google Scholar
  4. Bartl B, Mašková L, Paulusová H et al (2016) The effect of dust particles on cellulose degradation. Stud Conserv 61(4):203–208Google Scholar
  5. Battista OA, Coppick S, Howsmon JA et al (1956) Level-off degree of polymerization: relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335Google Scholar
  6. Bégin P, Iraci JG, Hendricks KB (1996) Accelerated ageing as an aid in the evaluation of mass deacidification treatments. In: Palumbro GB (ed) International conference on conservation and restauration of archival and library materials. Istituto centrale per la patologia del libro, Rome, pp 727–741Google Scholar
  7. Bigourdan J-L, Reilly JM (2002) Effect of fluctuating environments on paper materials – stability and practical significance for preservation. In : Preprints of La conservation à l’ère du numérique: actes des quatrièmes journées internationales d’études de l’ARSAG, ARSAG, Paris, pp 180–192Google Scholar
  8. Bogaard J, Whitmore PM (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. In: Daniels V, Donnithorne A, Smith P (eds) Preprints of Works of art on paper books, documents and photographs: techniques and conservation. IIC, London, pp 11–15Google Scholar
  9. Burgess HD, Kaminska EM, Boronyak-Szaplonczay A (1992) Evaluation of commercial mass deacidification processes: AKZO-DEZ, WEI T’O and FMC-MG3, phase I - naturally aged papers. Canadian Conservation Institute, OttawaGoogle Scholar
  10. Calvini P (2005) The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose 12:445–447Google Scholar
  11. Calvini P (2008) Comments on the article “On the degradation evolution equations of cellulose” by Hongzhi Ding and Zhongdong Wang. Cellulose 15:225–228Google Scholar
  12. Calvini P (2014) On the meaning of the Emsley, Ding and Wang and Calvini equations applied to the degradation of cellulose. Cellulose 21:1127–1134Google Scholar
  13. Curran K, Možir A, Underhill M et al (2014) Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym Degrad Stab 107:294–306Google Scholar
  14. Daniel F, Flieder F, Leclerc F (1988) Étude de l’effet de la pollution sur des papiers désacidifiés. In: Les documents graphiques et photographiques. Analyse et conservation, Travaux du Centre de recherches sur la conservation des documents graphiques 1986–1987. La documentation française, Paris, pp 53–92Google Scholar
  15. Daniel F, Flieder F, Leclerc F (1990) The effects of pollution on deacidified paper. Restaurator 11:179–207Google Scholar
  16. Daniel F, Flieder F, Leclerc F (1991) Étude de l’effet de la pollution sur des papiers désacidifiés. In: Les documents graphiques et photographiques. Analyse et conservation. Travaux du Centre de Recherches sur la Conservation des Documents graphiques 1988–1990. La documentation française, Paris, pp 37–71Google Scholar
  17. Daniel F, Demarque A, Flieder F (1999) Effet de l’encapsulation sous vide du papier par la méthode “Archipress.” In: Bridgland J (ed) Preprints of ICOM Committee for Conservation, ICOM-CC, 12th Triennial Meeting, vol 2, James & James, London, pp 495–500Google Scholar
  18. Daruwalla EH, Narsian MG (1966) Detection and identification of acid-sensitive linkages in cellulose fibre substances. Tappi 49:106–110Google Scholar
  19. Ding HZ, Wang ZD (2007) Time-temperature superposition method for predicting the permanence of paper by extrapolating accelerated ageing data to ambient conditions. Cellulose 14:171–181Google Scholar
  20. Ding HZ, Wang ZD (2008a) On the degradation evolution equations of cellulose. Cellulose 15:205–224Google Scholar
  21. Ding HZ, Wang ZD (2008b) Authors response to the comments by P. Calvini regarding the article “On the degradation evolution equations of cellulose” by Hongzhi Ding and Zhongdong Wang. Cellulose 15:229–237Google Scholar
  22. Dubus M, Amoros VA, Bouvet S, Brarda-wieber J-M, Colson I, Dupont A-L et al (2018) Should we discard historical wooden archival boxes? In: Adriaens M, Bioletti S, Rabin I (eds) Chemical interactions between cultural artefacts and indoor environment. ACCO, The Hague, pp 49–62Google Scholar
  23. Dupont A-L, Tétreault J (2000) Study of cellulose degradation in acetic acid environments. Stud Conserv 45:201–210Google Scholar
  24. Dupont AL, Ramalho O, Lattuati-Derieux A, Egasse C (2009) Vers un diagnostic non-destructif de l’état de conservation des documents graphiques: une nouvelle approche analytique intégrée de caractérisation du papier, rapport final, Centre de recherche sur la conservation des collections, ParisGoogle Scholar
  25. Dupont A-L, Réau D, Bégin P, Paris-Lacombe S, Tétreault J, Mortha G (2018) Accurate molar masses of cellulose for the determination of degradation rates in complex paper samples. Carbohydr Polym. Google Scholar
  26. Edward CJ, Lyth Hudson F, Hockey JA (1968) Sorption of sulphur dioxide by paper. J Appl Chem 18:146–148Google Scholar
  27. Ekenstam AA (1936) Über das Verhalten der Cellulose in Mineralsäure-Lösungen, II. Mitteil.: kinetisches Studium des Abbaus der Cellulose in Säure-Lösungen. Ber Dtsch Chem Ges 69:549–552Google Scholar
  28. Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56Google Scholar
  29. Emsley AM, Heywood RJ, Ali M, Eley CM (1997) On the kinetics of degradation of cellulose. Cellulose 4:1–5Google Scholar
  30. Eusman E (1995) Tideline formation in paper objects: cellulose degradation at the wet-dry boundary. Conserv Res, pp 11–27Google Scholar
  31. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  32. Gehlen MH (2010) Kinetics of autocatalytic acid hydrolysis of cellulose with crystalline and amorphous fractions. Cellulose 17:245–252Google Scholar
  33. Gibson HW (1969) Chemistry of formic acid and its simple derivatives. Chem Rev 69:673–692Google Scholar
  34. Gibson LT, Ewlad-Ahmed A, Knight B et al (2012) Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay? Chem Cent J 6:42Google Scholar
  35. Graminski EL, Parks EJ, Toth EE (1979) The effects of temperature and moisture on the accelerated aging of paper. In: Eby RK (ed) Durability of macromolecular materials, ACS Symposium Series, vol 95. American Chemical Society, Washington DC, pp 341–355Google Scholar
  36. Grau-Bové J, Budič B, Cigić IK et al (2016) The effect of particulate matter on paper degradation. Herit Sci 4:2Google Scholar
  37. Gray GG (1969) An accelerated-aging study comparing kinetic rates vs. TAPPI Standards 453. Tappi 52:325–334Google Scholar
  38. Grontøft T, Raychaudhuri MR (2004) Compilation of table of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmos Environ 38:533–544Google Scholar
  39. Gurnagul N, Zou X (1994) The effect of atmospheric pollutants on paper permanence: a literature review. Tappi 77:199–204Google Scholar
  40. Havermans JB (1994) The effects of air pollutants on accelerating ageing of cellulose containing materials. Preliminary results of the STEP project (CT90-0100). In: Environnement et conservation de l’écrit, de l’image et du son: actes des Deuxièmes Journées Internationales d’Etudes de l’ARSAG. Association pour la recherche scientifique sur les arts graphiques, Paris, pp 39–47Google Scholar
  41. Havermans JBGA (1995a) Environmental influences on the deterioration of paper. Delft University, RotterdamGoogle Scholar
  42. Havermans J (1995b) Effects of air pollutants on the accelerated ageing of cellulose-based materials. Restaurator 16:209–233Google Scholar
  43. Hill DJT, Le TT, Darveiza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer, part 1: molecular weight study of cellulose insulation paper, tensile strength of cellulose insulation paper. Polym Degrad Stab 48:79–87Google Scholar
  44. Immergut EA, Ranby BG (1956) Heterogeneous acid hydrolysis of native cellulose fibers. Ind Eng Chem 48:1183–1189Google Scholar
  45. Iversen T, Kolar J (1991) Effects of nitrogen dioxide on paper. FoU-projektet fer Papperskonservering Report No. 5, StockholmGoogle Scholar
  46. Jeong M-J, Dupont A-L, de la Rie R (2012) Degradation of cellulose at the wet-dry interface: I—study of the depolymerisation. Cellulose 19:1135–1147Google Scholar
  47. Johansson A, Kolseth P, Lindqvist O (2000) Uptake of air pollutants by paper. Restaurator 21:117–137Google Scholar
  48. Johnson BJ, Betterton EA, Craig D (1996) Henry’s law coefficients of formic and acetic acids. J Atmos Chem 24:113–119Google Scholar
  49. Kaminska EM, Bégin P, Grattan DW et al (2001) ASTM/ISR research program on the effects of aging on printing and writing papers: accelerated aging test method development: final report. Canadian Conservation Institute, OttawaGoogle Scholar
  50. Kimberly AE (1932) Deteriorative effect of sulphur dioxide upon paper in an atmospheric of constant humidity and temperature. J Res Natl Bur Stand 8:159–171Google Scholar
  51. Kočar D, Strlič M, Kolar J et al (2005) Chemiluminescence from paper III. The effect of superoxide anion and water. Polym Degrad Stab 88:407–414Google Scholar
  52. Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science Publishers, PhiladelphiaGoogle Scholar
  53. Kuhn W (1930) Über die Kinetik des Abbaues hochmolekularer Ketten. Ber Dtsch Chem Ges 63:1503–1509Google Scholar
  54. Lattuati-Derieux A, Ramalho O, Egasse C, Thao-Heu S, Dupont A-L (2015) Evaluation of solid-phase microextraction on-fiber derivatization for the analysis of paper degradation compounds. e-Preserv Sci 12:38–49Google Scholar
  55. Lee K, Inaba M (2017) Accelerated ageing test of naturally aged paper (part IV). Jpn TAPPI J 71:1204–1214Google Scholar
  56. Lesas CH, Pierre M (1980) Cross-linked cellulose fibers. US Patent, 4204055Google Scholar
  57. Lopez-Aparicio S, Grontoft T, Odlyha M et al (2010) Measurement of organic and inorganic pollutants in micorclimate frames for paintings. Preserv Sci 7:59–70Google Scholar
  58. Lyth Hudson F (1967) Acidity of 17th and 18th century books in two libraries. Pap Technol 8:189–196Google Scholar
  59. Lyth Hudson F, Grant RL, Hockey JA (1964) The pick-up of sulphur dioxide by paper. J Appl Chem 14:444–447Google Scholar
  60. Menart E, De Bruin G, Strlic M (2011) Dose-response functions for historic paper. Polym Degrad Stab 96:2029–2039Google Scholar
  61. Menart E, De Bruin G, Strlic M (2014) Effects of NO2 and acetic acid on the stability of historic paper. Cellulose 21:3701–3713Google Scholar
  62. Nelli CH, Rochelle GT (1998) Simultaneous sulfur dioxide and nitrogen dioxide removal by calcium hydroxide and calcium silicate solids. J Air Waste Manag Assoc 48:819–828Google Scholar
  63. Nelson ML, Tripp VW (1953) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci 10:577–586Google Scholar
  64. Nevell TP (1985) Degradation of cellulose by acids, alkalis, and mechanical means (chapter 9). In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its application. Wiley, NY, pp 223–242Google Scholar
  65. Nguyen T-P, Dubus M, Saheb M, Mareynat S (2006) Étude de la qualité de l’air dans les magasins de la bibliothèque nationale de France: premiers résultats. Support/Tracé 6:48–57Google Scholar
  66. Parchas M-D, Dubus M, N’Guyen T-P, Colson I, Dupont A-L et al (2012) Faut-il jeter les boîtes d’archives anciennes en bois? In: Acte du colloque Sciences des Matériaux du Patrimoine Culturel, Ministère de la Culture et de la Communication, ParisGoogle Scholar
  67. Parker ME, Bronlund JE, Mawson AJ (2006) Moisture sorption isotherms for paper and paperboard in food chain conditions. Packag Technol Sci 19:193–209Google Scholar
  68. Perrin DD (1982) Ionisation constants of inorganic acids and bases in aqueous solution. Pergamon Press, New YorkGoogle Scholar
  69. Rasch RH (1932) Accelerated aging test for paper. J Res Nat Bur Stand 7:465–475Google Scholar
  70. Reilly JM, Zinn E, Adelstein P (2001) Atmospheric pollutant aging test method development. Rochester Institute of Technology, Image Permanence Institute, RochesterGoogle Scholar
  71. Reinhardt RM, Fujimoto RA, Reid JD, Park JD (1966) Process for crosslinking cellulosic textile and paper materials with gaseous formaldehyde, US Patent, 3264054Google Scholar
  72. Richter GA (1931) Durability of purified wood fibers: accelerated aging tests of various types of paper-making fibers. Ind Eng Chem 23:371–380Google Scholar
  73. Robinet L, Hall C, Eremin K et al (2009) Alteration of soda silicate glasses by organic pollutants in museums: mechanisms and kinetics. J Non-Cryst Solids 355:1479–1488Google Scholar
  74. Rojas J, Azevedo E (2011) Functionalization and crosslinking of microcrystalline cellulose in aqueous media: a safe and economic approach. Int J Pharm Sci Rev Res 8:28–36Google Scholar
  75. Rychly J, Strlic M (2005) Degradation and ageing of polymers. In: Strlic M, Kolar J (eds) Ageing and stabilisation of paper. National and University Library, Ljubljana, pp 9–23Google Scholar
  76. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Max Planck Institute for Chemistry, MainzGoogle Scholar
  77. Schieweck A, Salthammer T (2011) Indoor air quality in passive-type museum showcases. J Cult Herit 12:205–213Google Scholar
  78. Schieweck A, Markewitz D, Salthammer T (2007) Chemical substances in newly constructed showcases. Z Kunsttechnol Konserv: ZKK 21:280–286Google Scholar
  79. Scribner BW (1939) Comparison of accelerated aging of record papers with normal aging for 8 years. J Res Nat Bur Stand 23:405–413Google Scholar
  80. Segal L (1971) Derivatives of cellulose: A. Effect of morphology on reactivity. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives. Wiley-Interscience, NY, pp 719–739Google Scholar
  81. Segal L, Wakelyn PJ (1985) Cotton fibers. In: Lewin M, Pearce EM (eds) Fiber chemistry. Marcel Dekker, NY, pp 809–908Google Scholar
  82. Servant J, Kouadio G, Cros B, Delmas R (1991) Carboxylic monoacids in the air of Mayombe forest (Congo): role of the forest as a source or sink. J Atmos Chem 12:367–380Google Scholar
  83. Shahani CJ (1994) Accelerated aging of paper: can it really foretell the permanence of paper? In: Preservation research and testing series; no. 9503. Library of Congress, Preservation Directorate. Washington, DC, pp 120–139Google Scholar
  84. Shahani CJ, Harrison G (2002) Spontaneous formation of acids in the natural aging of paper. In: Daniels V, Donnithorne A, Smith P (eds) Works of art on paper, books, documents and photographs: techniques and conservation. Contributions to the Baltimore congress. IIC, London, pp 189–192Google Scholar
  85. Shahani CJ, Hengemihle FH, Weberg N (1989) The effect of variations in relative humidity on the accelerated aging of paper. In: Zeronian SH, Needles HL (eds) Historic textile and paper materials II: conservation and characterization. American Chemical Society, Washington, pp 63–80Google Scholar
  86. Sharples A (1971) Acid hydrolysis and alcoholysis. In: Bikales NM, Segal L (eds) Cellulose and cellulose derivatives. Wiley-Interscience, NY, pp 991–1006Google Scholar
  87. Smith RD (1969) Paper impermanence as a consequence of pH and storage conditions. Libr Q 39:153–195Google Scholar
  88. Smith RD (1972) A comparison of paper in identical copies of books from the Lawrence University, the Newberry, and the New York Public Libraries. Restauratorsuppl Suppl 2:1–76Google Scholar
  89. Souguir Z, Dupont A-L, de la Rie R (2008) Formation of brown lines in paper: characterization of cellulose degradation at the wet-dry interface. Biomacromol 9:2546–2552Google Scholar
  90. Stilwell RL, Marks MG, Saferstein L, Wiseman DM (1997) Oxidized cellulose: chemistry, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymer, vol 15. Harwood Academic Publishers, Amsterdam, pp 291–306Google Scholar
  91. Strlic M, Krali Cigic I, Mozir A et al (2011) The effect of volatile organic compounds and hypoxia on paper degradation. Polym Degrad Stab 96:608–615Google Scholar
  92. Strlič M, Kralj Cigić I, Možir AM et al (2010a) Test for compatibility with organic heritage materials: a proposed procedure. e-Preserv Sci 7:78–86Google Scholar
  93. Strlič M, Menart E, Cigić IK et al (2010b) Emission of reactive oxygen species during degradation of iron gall ink. Polym Degrad Stab 95:66–71Google Scholar
  94. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose. I Structures studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Ber 89:118–131Google Scholar
  95. Tétreault J (1992) La mesure de l’acidité des produits volatils. J Int Inst Conserv Can Group 17:17–25Google Scholar
  96. Tétreault J, Bégin P, Dupont A-L, Paris S (2010) Carbonyl vapours and their impact on paper degradation, Abstract of the 9th Indoor Air Quality Meeting. Chalon-sur-Saône. Accessed 4 July 2018
  97. Tétreault J, Dupont A-L, Bégin P, Paris S (2013) The impact of volatile compounds released by paper on cellulose degradation in ambient hygrothermal conditions. Polym Degrad Stab 98:1827–1837Google Scholar
  98. Timmermann EO (2003) Multilayer sorption parameters: BET or GAB values? Colloid Surf A 220(1):235–260Google Scholar
  99. Vail SI (1985) Cross-linking cellulose (chapter 16). In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Wiley, NY, pp 223–242Google Scholar
  100. Whitmore PM (2011) Paper ageing and the influence of water. In: Banik G, Bruckle I (eds) Paper and water: a guide for conservators. Butterworth-Heinemann, NY, pp 219–254Google Scholar
  101. Whitmore PM, Bogaard J (1994) Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator 15:26–45Google Scholar
  102. Williams EL, Grosjean D (1992) Exposure of deacidified and untreated paper to ambient levels of sulfur dioxide and nitrogen dioxide: nature and yields of reaction products. J Am Inst Conserv 31:199–212Google Scholar
  103. Wilson WK, Parks EJ (1980) Comparison of accelerated aging of book papers in 1937 with 36 years natural aging. Restaurator 4:1–55Google Scholar
  104. Wilson WK, Harvey JL, Mandel J, Workman T (1955) Accelerated aging of record papers compared with normal aging. Tappi 38:543–548Google Scholar
  105. Wise A, Granowski C, Gourley B (2005) Out of the box: measuring microclimates in Australian-made Solander boxes. In: Kosek J, Rayner J, Christensen B (eds) Art on paper: mounting and housing. Archetype Publications Ltd, London, pp 55–58Google Scholar
  106. Zeisler P, Hamm U, Gottsching L (1995) Alterungsbeständigkeit von Papier unter dem Einfluß von Luftschadstoffen: Teil I: graphische papiere. Das Papier 10:616–628Google Scholar
  107. Zervos S (2010) Natural and accelerated ageing of cellulose and paper: a literature review. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Publishing, NY, pp 155–203Google Scholar
  108. Zou X (2004) During storage and shipping, nitrogen oxides can cause rapid yellowing and degradation of pulp and paper products. Pulp Pap Can 105:51–54Google Scholar
  109. Zou X, Gurnagul N, Uesaka T, Bouchard J (1994) Accelerated aging of papers of pure cellulose: mechanism of cellulose degradation and paper embrittlement. Polym Degrad Stab 43:393–402Google Scholar
  110. Zou X, Uesaka T, Gurnagul N (1996a) Prediction of paper permanence by accelerating aging part I. Kinetic analysis of the aging process. Cellulose 3:243–267Google Scholar
  111. Zou X, Uesaka T, Gurnagul N (1996b) Prediction of paper permanence by accelerating aging part II. Comparison of the predictions with natural aging results. Cellulose 3:269–279Google Scholar
  112. Zou X, Gurnagul N, Deschâtelets S, Bégin et al (1998) Canadian co-operative permanent paper research project: the impact of lignin on paper permanence. Final report. Canadian Conservation Institute, OttawaGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Canadian HeritageCanadian Conservation InstituteOttawaCanada
  2. 2.Centre de Recherche sur la Conservation des Collections (CRC, CNRS USR 3224)Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations