Advertisement

Cellulose

pp 1–15 | Cite as

A critical review of cellulose-based nanomaterials for water purification in industrial processes

  • Dong WangEmail author
Review Paper
  • 127 Downloads

Abstract

At present, natural polymers have found applications in clothing, paper, medicine, fuel, etc. The advancement in science and technology has paved the way for nanotechnology, which combines the unique properties of these abundant polymers on a nanoscale to produce novel nanomaterials. Using mechanical or chemical treatment, cellulosic materials can be converted into cellulose nanofibers and nanocrystals which have excellent capabilities compared to microscale native cellulose fibers, especially in water purification applications. This review summarizes the most recent processing methods for nanocellulose and techniques employed for rational surface chemical modification. It also critically assesses the applications of cellulose-based nanomaterials with respect to their functionalization for removal of pollutants such as heavy metals, organic compounds and pharmaceutical residues from water.

Graphical abstract

Keywords

Nanocellulose Water purification Cellulose membrane Heavy metal Cellulose nanomaterials 

Notes

Acknowledgments

This research was supported by Natural Science Foundation of China (51608350).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abou-Zeid RE, Dakrory S, Ali KA, Kamel S (2018a) Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int J Biol Macromol.  https://doi.org/10.1016/J.IJBIOMAC.2018.07.127 CrossRefPubMedGoogle Scholar
  2. Abou-Zeid RE, Khiari R, El-Wakil N, Dufresne A (2018b) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules.  https://doi.org/10.1021/acs.biomac.8b00839 CrossRefGoogle Scholar
  3. Akhlaghi SP, Tiong D, Berry RM, Tam KC (2014) Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. Eur J Pharm Biopharm 88:207–215.  https://doi.org/10.1016/j.ejpb.2014.04.012 CrossRefPubMedGoogle Scholar
  4. Anirudhan TS, Deepa JR, Christa J (2016) Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci 467:307–320.  https://doi.org/10.1016/j.jcis.2016.01.023 CrossRefPubMedGoogle Scholar
  5. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17:21–27.  https://doi.org/10.1021/la001070m CrossRefGoogle Scholar
  6. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375.  https://doi.org/10.1016/j.carbpol.2013.11.067 CrossRefPubMedGoogle Scholar
  7. Banavath HN, Bhardwaj NK, Ray AK (2011) A comparative study of the effect of refining on charge of various pulps. Bioresour Technol 102:4544–4551.  https://doi.org/10.1016/j.biortech.2010.12.109 CrossRefPubMedGoogle Scholar
  8. Batmaz R, Mohammed N, Zaman M et al (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665.  https://doi.org/10.1007/s10570-014-0168-8 CrossRefGoogle Scholar
  9. Božič M, Liu P, Mathew AP, Kokol V (2014) Enzymatic phosphorylation of cellulose nanofibers to new highly-ions adsorbing, flame-retardant and hydroxyapatite-growth induced natural nanoparticles. Cellulose 21:2713–2726.  https://doi.org/10.1007/s10570-014-0281-8 CrossRefGoogle Scholar
  10. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  11. Carpenter AW, De Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287.  https://doi.org/10.1021/es506351r CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chan CH, Chia CH, Zakaria S et al (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Adv 5:18204–18212.  https://doi.org/10.1039/C4RA15754K CrossRefGoogle Scholar
  13. Chen L, Berry RM, Tam KC (2014) Synthesis of β-Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2:951–958.  https://doi.org/10.1021/sc400540f CrossRefGoogle Scholar
  14. Chen B, Zheng Q, Zhu J et al (2016) Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv 6:96518–96526.  https://doi.org/10.1039/c6ra19280g CrossRefGoogle Scholar
  15. Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose 21:2773–2787.  https://doi.org/10.1007/s10570-014-0334-z CrossRefGoogle Scholar
  16. Espino-Pérez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154.  https://doi.org/10.1016/j.eurpolymj.2013.07.017 CrossRefGoogle Scholar
  17. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391.  https://doi.org/10.1080/15583720802022281 CrossRefGoogle Scholar
  18. Gamelas JAF, Pedrosa J, Lourenço AF et al (2015) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33.  https://doi.org/10.1016/j.micron.2015.02.003 CrossRefPubMedGoogle Scholar
  19. Geay M, Marchetti V, Clément A et al (2000) Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. J Wood Sci 46:331–333.  https://doi.org/10.1007/BF00766226 CrossRefGoogle Scholar
  20. Goetz LA, Jalvo B, Rosal R, Mathew AP (2016) Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Memb Sci 510:238–248.  https://doi.org/10.1016/j.memsci.2016.02.069 CrossRefGoogle Scholar
  21. Goffin AL, Raquez JM, Duquesne E et al (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12:2456–2465.  https://doi.org/10.1021/bm200581h CrossRefGoogle Scholar
  22. Goffin AL, Habibi Y, Raquez JM, Dubois P (2012) Polyester-grafted cellulose nanowhiskers: a new approach for tuning the microstructure of immiscible polyester blends. ACS Appl Mater Interfaces 4:3364–3371.  https://doi.org/10.1021/am3008196 CrossRefPubMedGoogle Scholar
  23. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244.  https://doi.org/10.1039/b806789a CrossRefGoogle Scholar
  24. Hassan M, Hassan E, Fadel SM et al (2018) Metallo-terpyridine-modified cellulose nanofiber membranes for papermaking wastewater purification. J Inorg Organomet Polym Mater 28:439–447.  https://doi.org/10.1007/s10904-017-0685-7 CrossRefGoogle Scholar
  25. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47.  https://doi.org/10.1016/j.cej.2013.02.054 CrossRefGoogle Scholar
  26. Hokkanen S, Repo E, Suopajärvi T et al (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487.  https://doi.org/10.1007/s10570-014-0240-4 CrossRefGoogle Scholar
  27. Hong HJ, Lim JS, Hwang JY et al (2018) Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions. Carbohydr Polym 195:136–142.  https://doi.org/10.1016/j.carbpol.2018.04.081 CrossRefPubMedGoogle Scholar
  28. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  29. Jackson JK, Letchford K, Wasserman BZ et al (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330.  https://doi.org/10.2147/IJN.S16749 CrossRefGoogle Scholar
  30. Jamshaid A, Hamid A, Muhammad N et al (2017) Cellulose-based materials for the removal of heavy metals from wastewater—an overview. ChemBioEng Rev 4:240–256.  https://doi.org/10.1002/cben.201700002 CrossRefGoogle Scholar
  31. Jin L, Li W, Xu Q, Sun Q (2015a) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456.  https://doi.org/10.1007/s10570-015-0649-4 CrossRefGoogle Scholar
  32. Jin L, Sun Q, Xu Q, Xu Y (2015b) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355.  https://doi.org/10.1016/j.biortech.2015.08.093 CrossRefPubMedGoogle Scholar
  33. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393.  https://doi.org/10.1007/s10098-013-0634-2 CrossRefGoogle Scholar
  34. Kargarzadeh H, Mariano M, Gopakumar D et al (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189CrossRefGoogle Scholar
  35. Karim Z, Mathew AP, Kokol V et al (2016) High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv 6:20644–20653.  https://doi.org/10.1039/C5RA27059F CrossRefGoogle Scholar
  36. Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7:5232–5241.  https://doi.org/10.1039/c6ra25707k CrossRefGoogle Scholar
  37. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32.  https://doi.org/10.1002/mabi.201300298 CrossRefPubMedGoogle Scholar
  38. Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305.  https://doi.org/10.1002/smll.201001715 CrossRefPubMedGoogle Scholar
  39. Li J, Zuo K, Wu W et al (2018) Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr Polym 196:376–384.  https://doi.org/10.1016/j.carbpol.2018.05.015 CrossRefPubMedGoogle Scholar
  40. Liu P, Sehaqui H, Tingaut P et al (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461.  https://doi.org/10.1007/s10570-013-0139-5 CrossRefGoogle Scholar
  41. Liu P, Borrell PF, Božič M et al (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185.  https://doi.org/10.1016/j.jhazmat.2015.04.001 CrossRefPubMedGoogle Scholar
  42. Liu P, Oksman K, Mathew AP (2016) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182.  https://doi.org/10.1016/j.jcis.2015.11.033 CrossRefPubMedGoogle Scholar
  43. Luo X, Zeng J, Liu S, Zhang L (2015) An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres. Bioresour Technol 194:403–406.  https://doi.org/10.1016/j.biortech.2015.07.044 CrossRefPubMedGoogle Scholar
  44. Ma H, Burger C, Hsiao BS, Chu B (2012a) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13:180–186.  https://doi.org/10.1021/bm201421g CrossRefGoogle Scholar
  45. Ma H, Burger C, Hsiao BS, Chu B (2012b) Highly permeable polymer membranes containing directed channels for water purification. ACS Macro Lett 1:723–726.  https://doi.org/10.1021/mz300163h CrossRefGoogle Scholar
  46. Ma H, Hsiao BS, Chu B (2012c) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in Water. ACS Macro Lett 1:213–216.  https://doi.org/10.1021/mz200047q CrossRefGoogle Scholar
  47. Mautner A, Lee KY, Lahtinen P et al (2014) Nanopapers for organic solvent nanofiltration. Chem Commun 50:5778–5781.  https://doi.org/10.1039/c4cc00467a CrossRefGoogle Scholar
  48. Mautner A, Lee KY, Tammelin T et al (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214.  https://doi.org/10.1016/j.reactfunctpolym.2014.09.014 CrossRefGoogle Scholar
  49. Mautner A, Maples HA, Kobkeatthawin T et al (2016a) Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int J Environ Sci Technol 13:1861–1872.  https://doi.org/10.1007/s13762-016-1026-z CrossRefGoogle Scholar
  50. Mautner A, Maples HA, Sehaqui H et al (2016b) Nitrate removal from water using a nanopaper ion-exchanger. Environ Sci Water Res Technol 2:117–124.  https://doi.org/10.1039/C5EW00139K CrossRefGoogle Scholar
  51. Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403.  https://doi.org/10.1021/jp0219395 CrossRefGoogle Scholar
  52. Metreveli G, Wågberg L, Emmoth E et al (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 3:1546–1550.  https://doi.org/10.1002/adhm.201300641 CrossRefPubMedGoogle Scholar
  53. Mohite BV, Patil SV (2014) Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications. J Biomater Sci Polym Ed 25:2053–2065.  https://doi.org/10.1080/09205063.2014.970063 CrossRefPubMedGoogle Scholar
  54. Narwade VN, Khairnar RS, Kokol V (2017) In-situ synthesised hydroxyapatite-loaded films based on cellulose nanofibrils for phenol removal from wastewater. Cellulose 24:4911–4925.  https://doi.org/10.1007/s10570-017-1435-2 CrossRefGoogle Scholar
  55. Ohkawa K (2015) Nanofibers of cellulose and its derivatives fabricated using direct electrospinning. Molecules 20:9139–9154CrossRefGoogle Scholar
  56. Ohkawa K, Minato KI, Kumagai G et al (2006) Chitosan nanofiber. Biomacromol 7:3291–3294.  https://doi.org/10.1021/bm0604395 CrossRefGoogle Scholar
  57. Ohkawa K, Hayashi S, Nishida A et al (2009) Preparation of pure cellulose nanofiber via electrospinning. Text Res J 79:1396–1401.  https://doi.org/10.1177/0040517508101455 CrossRefGoogle Scholar
  58. Pääkko M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941.  https://doi.org/10.1021/bm061215p CrossRefGoogle Scholar
  59. Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055.  https://doi.org/10.1039/c2sm27344f CrossRefGoogle Scholar
  60. Peng S, Meng H, Ouyang Y, Chang J (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind Eng Chem Res 53:2106–2113.  https://doi.org/10.1021/ie402855t CrossRefGoogle Scholar
  61. Pillai SS, Deepa B, Abraham E et al (2013) Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol Environ Saf 98:352–360.  https://doi.org/10.1016/j.ecoenv.2013.09.003 CrossRefPubMedGoogle Scholar
  62. Qiao H, Zhou Y, Yu F et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303.  https://doi.org/10.1016/j.chemosphere.2015.07.078 CrossRefPubMedGoogle Scholar
  63. Ram B, Chauhan GS (2018) New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chem Eng J 331:587–596.  https://doi.org/10.1016/j.cej.2017.08.128 CrossRefGoogle Scholar
  64. Rathod M, Haldar S, Basha S (2015) Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies. Ecol Eng 84:240–249.  https://doi.org/10.1016/j.ecoleng.2015.09.031 CrossRefGoogle Scholar
  65. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61:183–190.  https://doi.org/10.1016/j.carbpol.2005.04.009 CrossRefGoogle Scholar
  66. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromol 12:3638–3644.  https://doi.org/10.1021/bm2008907 CrossRefGoogle Scholar
  67. Sehaqui H, de Larraya UP, Liu P et al (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844.  https://doi.org/10.1007/s10570-014-0310-7 CrossRefGoogle Scholar
  68. Sehaqui H, Perez de Larraya U, Tingaut P, Zimmermann T (2015) Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(<scp> ii </scp>) and a positively charged dye. Soft Matter 11:5294–5300.  https://doi.org/10.1039/C5SM00566C CrossRefPubMedGoogle Scholar
  69. Sehaqui H, Mautner A, Perez De Larraya U et al (2016) Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr Polym 135:334–340.  https://doi.org/10.1016/j.carbpol.2015.08.091 CrossRefPubMedGoogle Scholar
  70. Selkälä T, Suopajärvi T, Sirviö JA et al (2018) Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: the importance of pH and colloidal stability in the interaction with ionizable pollutants. Chem Eng J 350:378–385.  https://doi.org/10.1016/j.cej.2018.05.163 CrossRefGoogle Scholar
  71. Sharma PR, Chattopadhyay A, Sharma SK et al (2018) Nanocellulose from spinifex as an effective adsorbent to remove cadmium(II) from water. ACS Sustain Chem Eng 6:3279–3290.  https://doi.org/10.1021/acssuschemeng.7b03473 CrossRefGoogle Scholar
  72. Sheikhi A, Safari S, Yang H, van de Ven TGM (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces 7:11301–11308.  https://doi.org/10.1021/acsami.5b01619 CrossRefPubMedGoogle Scholar
  73. Shen W, Chen S, Shi S et al (2009) Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75:110–114.  https://doi.org/10.1016/j.carbpol.2008.07.006 CrossRefGoogle Scholar
  74. Shokoohi S, Arefazar A, Khosrokhavar R (2008) Silane coupling agents in polymer-based reinforced composites: a review. J Reinf Plast Compos 27:473–485.  https://doi.org/10.1177/0731684407081391 CrossRefGoogle Scholar
  75. Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16:1179–1191.  https://doi.org/10.1007/s10098-014-0717-8 CrossRefGoogle Scholar
  76. Sirviö JA, Hasa T, Leiviskä T et al (2016) Bisphosphonate nanocellulose in the removal of vanadium(V) from water. Cellulose 23:689–697.  https://doi.org/10.1007/s10570-015-0819-4 CrossRefGoogle Scholar
  77. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals. Int J Green Nanotechnol Biomed 4:46–53.  https://doi.org/10.1080/19430892.2012.654744 CrossRefGoogle Scholar
  78. Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6:1055–1061.  https://doi.org/10.1021/bm049291k CrossRefGoogle Scholar
  79. Suman Kardam A, Gera M, Jain VK (2015) A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ Technol (United Kingdom) 36:706–714.  https://doi.org/10.1080/09593330.2014.959066 CrossRefGoogle Scholar
  80. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer (Guildf) 32:1516–1526.  https://doi.org/10.1016/0032-3861(91)90435-L CrossRefGoogle Scholar
  81. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr Polym 146:148–165CrossRefGoogle Scholar
  82. Timofei S, Schmidt W, Kurunczi L, Simon Z (2000) A review of QSAR for dye affinity for cellulose fibres. Dye Pigment 47:5–16CrossRefGoogle Scholar
  83. Wang R, Guan S, Sato A et al (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Memb Sci 446:376–382.  https://doi.org/10.1016/j.memsci.2013.06.020 CrossRefGoogle Scholar
  84. Yang H, Alam MN, van de Ven TGM (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865–1875.  https://doi.org/10.1007/s10570-013-9966-7 CrossRefGoogle Scholar
  85. Yao C, Wang F, Cai Z, Wang X (2016) Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. RSC Adv 6:92648–92654.  https://doi.org/10.1039/C6RA20598D CrossRefGoogle Scholar
  86. Yu X, Tong S, Ge M et al (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943.  https://doi.org/10.1016/S1001-0742(12)60145-4 CrossRefGoogle Scholar
  87. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643.  https://doi.org/10.1021/acssuschemeng.6b00126 CrossRefGoogle Scholar
  88. Zhang X, Zhao J, Cheng L et al (2014) Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption. RSC Adv 4:55195–55201.  https://doi.org/10.1039/c4ra08307e CrossRefGoogle Scholar
  89. Zhang N, Zang GL, Shi C et al (2016) A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater 316:11–18.  https://doi.org/10.1016/j.jhazmat.2016.05.018 CrossRefPubMedGoogle Scholar
  90. Zhang K, Li Z, Kang W et al (2018) Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method. Carbohydr Polym 183:62–69CrossRefGoogle Scholar
  91. Zhao YH, Wang L (2012) Adsorption characteristics of congo red from aqueous solution on the carboxymethylcellulose/montmorillonite nanocomposite. Adv Mater Res 450–451:769–772.  https://doi.org/10.4028/www.scientific.net/AMR.450-451.769 CrossRefGoogle Scholar
  92. Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118.  https://doi.org/10.1039/c3ta14642a CrossRefGoogle Scholar
  93. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Elsevier, HobokenCrossRefGoogle Scholar
  94. Zhou Y, Saito T, Bergström L, Isogai A (2018) Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromol 19:633–639.  https://doi.org/10.1021/acs.biomac.7b01730 CrossRefGoogle Scholar
  95. Zhu C, Dobryden I, Rydén J et al (2015) Adsorption behavior of cellulose and its derivatives toward Ag(I) in aqueous medium: an AFM, spectroscopic, and DFT study. Langmuir 31:12390–12400.  https://doi.org/10.1021/acs.langmuir.5b03228 CrossRefPubMedGoogle Scholar
  96. Zhu W, Liu L, Liao Q et al (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797.  https://doi.org/10.1007/s10570-016-1045-4 CrossRefGoogle Scholar
  97. Zhu Q, Wang Y, Li M et al (2017) Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Sep Purif Technol 186:70–77.  https://doi.org/10.1016/j.seppur.2017.05.050 CrossRefGoogle Scholar
  98. Zoppe JO, Habibi Y, Rojas OJ et al (2010) Poly(N -isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromol 11:2683–2691.  https://doi.org/10.1021/bm100719d CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and TechnologyTianjin Chengjian UniversityTianjinPeople’s Republic of China

Personalised recommendations