Advertisement

Cellulose

pp 1–14 | Cite as

Tree-like cellulose nanofiber membranes modified by citric acid for heavy metal ion (Cu2+) removal

  • Kai Zhang
  • Zongjie Li
  • Nanping Deng
  • Jingge Ju
  • Yafang Li
  • Bowen Cheng
  • Weimin KangEmail author
  • Jing YanEmail author
Original Paper
  • 53 Downloads

Abstract

Eco-friendly tree-like porous carboxyl modified cellulose nanofiber membranes as highly efficient adsorbents for heavy metal ions were fabricated by the electrospinning of cellulose acetate (CA)/tetrabutylammonium chloride (TBAC)/manganese dioxide (MnO2) solution, and subsequent deacetylation treatment to turn CA into cellulose and citric acid modification to graft carboxyl group on the surface of cellulose nanofibers. The addition of TBAC led to the formation of tree-like structure and MnO2 particles were used as pore-forming agents. The effects of pH, initial ion concentrations and contact time on the removal capacity of heavy metal ions were investigated. During the removal process, the abundant carboxyl groups (–COOH) transferred to carboxylate ions (–COO) which had stronger ion exchange ability to the metal ion adsorption. In addition, the tree-like porous structure supplied large specific surface area and effectively increased the removal capacity. The removal process could reach a plateau in 90 min with the maximum removal amount of 399.14 mg/g. The removal process was also depicted by Langmuir and Freundlich isotherm model. Generally, the tree-like porous structure will have extensive prospects in the fields of filtration, electrochemistry, tissue engineering and so on.

Graphical abstract

Keywords

Cellulose Tree-like nanofiber Electrospinning Porous Removal Carboxyl modification 

Notes

Acknowledgments

The author would like to thank the National Natural Science Foundation of China (51673148), the China Postdoctoral Science Foundation Grant (2018M630276), the Science and Technology Plans of Tianjin (17JCZDJC38100, 16JCTPJC45600, 16PTSYJC00110) for their financial supports.

References

  1. Abdel-Halim ES, Al-Hoqbani AA (2015) Utilization of poly(acrylic acid)/cellulose graft copolymer for dye and heavy metal removal. BioResources 10(2):3112–3130CrossRefGoogle Scholar
  2. Bai H, Liu Z, Sun DD (2011) Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys Chem Chem Phys 13(13):6205CrossRefGoogle Scholar
  3. Bo Z, Fan T, Di Z (2008) Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J Hazard Mater 153(1–2):300–308Google Scholar
  4. Božić D, Gorgievski M, Stanković V, Štrbac N, Šerbula S, Petrović N (2013) Adsorption of heavy metal ions by beech sawdust: kinetics, mechanism and equilibrium of the process. Ecol Eng 58(10):202–206CrossRefGoogle Scholar
  5. Cai J, Lei M, He JRZ, Chen T, Liu S, Fu SH et al (2016) Electrospun composite nanofiber mats of cellulose@organically modified montmorillonite for heavy metal ion removal: design, characterization, evaluation of absorption performance. Compos A 92:10–16CrossRefGoogle Scholar
  6. Chen S, Wei S, Yu F, Hu W, Wang H (2010) Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+. J Appl Polym Sci 117(1):8–15Google Scholar
  7. Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429CrossRefGoogle Scholar
  8. Choi M, Jang J (2008) Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J Colloid Interface Sci 325(1):287CrossRefGoogle Scholar
  9. Chu B, Hsiao BS, Ma H (2013) Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem 17(13):1361–1370CrossRefGoogle Scholar
  10. El-Khouly AS, Takahashi Y, Saafan AA, Kenawy E, Hafiz YA (2011) Study of heavy metal ion absorbance by amidoxime group introduced to cellulose-graft-polyacrylonitrile. J Appl Polym Sci 120(2):866–873CrossRefGoogle Scholar
  11. Fakhre NA, Ibrahim BM (2017) The use of new chemically modified cellulose for heavy metal ion adsorption. J Hazard Mater 343:324CrossRefGoogle Scholar
  12. Ferrari E, Ranucci E, Edlund U, Albertsson A (2015) Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. J Appl Polym Sci 132(12):41695Google Scholar
  13. Gen Z, Guo Y (2015) Determination of cadmium in wastewater by potassium iodide-rhodamine spectrophotometry. Coal Chem Ind 38(10):103–105 (Chinese) Google Scholar
  14. Gurgel LVA, Gil LF (2009) Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Res 43(18):4479–4488CrossRefGoogle Scholar
  15. Haddad PR (1977) The application of ternary complexes to spectrofluorometric analysis. Talanta 24(1):1CrossRefGoogle Scholar
  16. Hallaji H, Keshtkar AR, Moosavian MA (2015) A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J Taiwan Inst Chem Eng 46:109–118CrossRefGoogle Scholar
  17. He ZY, Nie HL, Branford-White C, Zhu LM, Zhou YT, Zheng Y (2008) Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Biores Technol 99(17):7954–7958CrossRefGoogle Scholar
  18. Hu JS, Zhong LS, Song WG, Wan LJ (2008) Cheminform abstract: synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20(15):2977–2982CrossRefGoogle Scholar
  19. Huang H, Shen Y, Yu J, Guo H, Yang F, Gu J et al (2018a) A spherical zwitterionic cellulose acetate/graphene oxide composite adsorbent for efficient removal of Cu2+ and Cd2+ from aqueous solution. BioResources 13(2):3642–3658Google Scholar
  20. Huang Q, Liu M, Zhao J, Chen J, Zeng G, Huang H et al (2018b) Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl Surf Sci 427:535–544CrossRefGoogle Scholar
  21. Jansen RJJ, Bekkum HV (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33(8):1021–1027CrossRefGoogle Scholar
  22. Jia CJ, Sun LD, Yan ZG, Pang YC, You LP, Yan CH (2007) Iron oxide tube-in-tube nanostructures. J Phys Chem C 111(35):13022–13027CrossRefGoogle Scholar
  23. Jin IL, Kim SI, Jung Y, Kim SH (2013) Fabrication and medical applications of lotus-leaf-like structured superhydrophobic surfaces. Polym Korea 37(4):411–419CrossRefGoogle Scholar
  24. Kolbasov A, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2017) Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. J Membr Sci 530:250–263CrossRefGoogle Scholar
  25. Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3(3):679–684CrossRefGoogle Scholar
  26. Lang W, Sokhansanj S (2007) Studies on the sorption characteristics of bulk wheat and canola. J Hazard Mater 147(3):979CrossRefGoogle Scholar
  27. Li M, Wang LJ, Li D, Cheng YL, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Int J Food Eng 102(3):136–143Google Scholar
  28. Li Z, Xu Y, Fan L, Kang W, Cheng B (2016) Fabrication of polyvinylidene fluoride tree-like nanofiber via one-step electrospinning. Mater Des 92:95–101CrossRefGoogle Scholar
  29. Li Z, Kang W, Wei N, Qiu J, Sun C, Cheng B (2017) Preparation of a polyvinylidene fluoride tree-like nanofiber mat loaded with manganese dioxide for highly efficient lead adsorption. RSC Adv 7(14):8220–8229CrossRefGoogle Scholar
  30. Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40(18):2119–2129CrossRefGoogle Scholar
  31. Liu D, Li Z, Li W, Zhong Z, Xu J, Ren J et al (2013) Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind Eng Chem Res 52(32):11036–11044CrossRefGoogle Scholar
  32. Low KS, Lee CK, Mak SM (2004) Sorption of copper and lead by citric acid modified wood. Wood Sci Technol 38(8):629–640CrossRefGoogle Scholar
  33. Nasir M, Matsumoto H, Minagawa M, Tanioka A, Danno T, Horibe H (2007) Preparation of porous PVDF nanofiber from PVDF/PVP blend by electrospray deposition. Polym J 39(10):1060–1064CrossRefGoogle Scholar
  34. Pant HR, Pant B, Pokharel P, Han JK, Tijing LD, Chan HP et al (2013) Photocatalytic TiO2–RGO/nylon-6 spider-wave-like nano-nets via electrospinning and hydrothermal treatment. J Membr Sci 429(4):225–234CrossRefGoogle Scholar
  35. Ravikumar L (2015) The use of new chemically modified cellulose for heavy metal ion adsorption and antimicrobial activities. J Water Resour Prot 7(6):530–545CrossRefGoogle Scholar
  36. Shi J, Li H, Lu H, Zhao X (2015) Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution. J Chem Eng Data 60(7):2035–2041CrossRefGoogle Scholar
  37. Son WK, Youk JH, Lee TS, Park WH (2010) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637CrossRefGoogle Scholar
  38. Tan P, Sun J, Hu Y, Zheng F, Qi B, Chen Y et al (2015) Adsorption of Cu2+, Cd2+, and Ni2+, from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater 297:251–260CrossRefGoogle Scholar
  39. Tao J, Xiong J, Jiao C, Zhang D, Lin H, Chen Y (2017) Cellulose/polymer/silica composite cotton fiber based on a hyperbranch-mesostructure system as versatile adsorbent for water treatment. Carbohydr Polym 166:271–280CrossRefGoogle Scholar
  40. Thirumavalavan M, Lai YL, Lin LC, Lee JF (2010) Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: langmuir adsorption isotherms. J Chem Eng Data 55(3):1186–1192CrossRefGoogle Scholar
  41. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J et al (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydr Polym 83(2):743–748CrossRefGoogle Scholar
  42. Ünlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280CrossRefGoogle Scholar
  43. Wang ZK, Fu Z, Ye CL (2009) Recovery of nickel from aqueous samples with water-soluble carboxyl methyl cellulose-acetone system. J Hazard Mater 170(2–3):705CrossRefGoogle Scholar
  44. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces 4(6):3207CrossRefGoogle Scholar
  45. Wu Q, Li W, Liu S (2014) Carboxyl-rich carbon microspheres prepared from pentosan with high adsorption capacity for heavy metal ions. Mater Res Bull 60:516–523CrossRefGoogle Scholar
  46. Yang S, Fu S, Liu H, Zhou Y, Li X (2011a) Hydrogel beads based on carboxylmethyl cellulose for removal heavy metal ions. J Appl Polym Sci 119(2):1204–1210CrossRefGoogle Scholar
  47. Yang Y, Liu L, Güder F, Berger A, Scholz R, Albrecht O et al (2011b) Regulated oxidation of nickel in multisegmented nickel–platinum nanowires: an entry to wavy nanopeapods. Angew Chem Int Ed 123(46):11047–11050CrossRefGoogle Scholar
  48. Zang C, Zhang D, Xiong J, Lin H, Chen Y (2014) Preparation of a novel adsorbent and heavy metal ion adsorption. J Eng Fibers 9(4):165–170Google Scholar
  49. Zhang X, Zhao J, Cheng L, Lu C, Wang Y, He X et al (2014) Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption. RSC Adv 4(98):55195–55201CrossRefGoogle Scholar
  50. Zhang K, Li Z, Kang W, Deng N, Yan J, Ju J et al (2017) Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method. Carbohydr Polym 183:62–69CrossRefGoogle Scholar
  51. Zhao SY (2014) Study on thiolated modification and properties of porous cellulose acetate nanofibers. Dissertation, Tianjin Polytechnic UniversityGoogle Scholar
  52. Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb(II) and malachite green from aqueous solution by modified cellulose. Cellulose 21(4):2797–2809CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kai Zhang
    • 1
    • 2
  • Zongjie Li
    • 1
    • 3
  • Nanping Deng
    • 1
  • Jingge Ju
    • 1
  • Yafang Li
    • 2
  • Bowen Cheng
    • 2
  • Weimin Kang
    • 1
    • 2
    Email author
  • Jing Yan
    • 2
    Email author
  1. 1.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinChina
  2. 2.School of TextilesTianjin Polytechnic UniversityTianjinChina
  3. 3.School of Material Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations