Advertisement

Cellulose

pp 1–12 | Cite as

Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface

  • Lihui Gu
  • Bo Jiang
  • Junlong Song
  • Yongcan JinEmail author
  • Huining Xiao
Original Paper
  • 57 Downloads

Abstract

In this work, lignocellulose nanofibrils (LCNFs) were initially prepared from 4, 8 and 16% sodium hydroxide pretreated wheat straw by mechanical grinding to evaluate the effect of lignin on the fibrillation process, and then superhydrophobic surface was prepared through coating fluoroalkyl silane modified LCNFs on glass and filter paper. The LCNFs with various amounts of lignin possess a fine structure with an average diameter of 13–17 nm and the length in microscale. The superhydrophobic surface was obtained by the LCNFs modified with the fluoroalkyl silane at an extremely low dosage (0.31 v/v%) owing to the presence of inherent hydrophobic lignin for synergetic effect. Although the high content of lignin in LCNFs has minor negative effect on the abrasion resistance of the as-prepared superhydrophobic surfaces, such a superhydrophobic surface has excellent water repellency and self-cleaning properties that offer LCNFs many promising applications.

Keywords

Lignocellulose nanofibrils (LCNFs) Lignin Superhydrophic surface Water Contact angle (WCA) Modification Silane 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31770623 and 31730106).

References

  1. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRefGoogle Scholar
  2. Abe K, Iwamoto S, Hiroyuki Y (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278CrossRefGoogle Scholar
  3. Alemdar A, Sain M (2008a) Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671CrossRefGoogle Scholar
  4. Alemdar A, Sain M (2008b) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRefGoogle Scholar
  5. Baidya A, Ganayee MA, Ravindran SJ, Tam KC, Das SK, Ras RHA, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11(11):11091–11099CrossRefGoogle Scholar
  6. Ballner D, Herzele S, Keckes J, Edler M, Griesser T, Saake B, Liebner F, Potthast A, Paulik C, Gindl-Altmutter W (2016) Lignocellulose nanofiber-reinfored polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Appl Mater Interfaces 8(21):13520–13525CrossRefGoogle Scholar
  7. Bian HY, Chen LH, Dai HQ, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176CrossRefGoogle Scholar
  8. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E (2007) Why do pigeon feathers repel water? Hydrophobicity of pennae, cassie-bacter wetting hypothesis and cassie-wenzel capillarity-induced wetting transition. J Colloid Interface Sci 311(1):212–216CrossRefGoogle Scholar
  9. Browning BL (1967) Methods of wood chemistry, vol 2. Wiley, New YorkGoogle Scholar
  10. Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17(1):40–71CrossRefGoogle Scholar
  11. Chen LH, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRefGoogle Scholar
  12. Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170CrossRefGoogle Scholar
  13. Deng X, Mammen L, Zhao YF, Lellign P, Müllen K, Li C, Butt H-J, Vollmer D (2011) Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv Mater 23(26):962–2965CrossRefGoogle Scholar
  14. Diop CIK, Tajvidi M, Bilodeau MA, Bousfiled DW, Hunt JF (2017) Isolation of lignocellulose nanofibrils (LCNF) and application as adhesive replacement in wood composites: example of fiberboard. Cellulose 24(7):3037–3050CrossRefGoogle Scholar
  15. Ferrer A, Quintana E, Filpponen H, Solala I, Vidal T, Rodrìguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193CrossRefGoogle Scholar
  16. Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T, Rahikkala A, Correia A, Kohout T, Sarmento B, Yli-Kauhaluoma J, Hirvonen J, Ikkala O, Kostiainen MA, Santos HA (2017) In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 121:97–108CrossRefGoogle Scholar
  17. Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36CrossRefGoogle Scholar
  18. Gindl-Altmutter W, Obersriegnig M, Veigel S, Liebner F (2015) Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose. Chemsuschem 8(1):87–91CrossRefGoogle Scholar
  19. Hideno A, Abe K, Uchimura H, Yano H (2016) Preparation by combined enzymatic and mechanical treatment and characterization of nanofibrillated cotton fibers. Cellulose 23(6):3639–3651CrossRefGoogle Scholar
  20. Hoeger I, Nair SS, Ragauskas AJ, Deng YL, Rojas J, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818CrossRefGoogle Scholar
  21. Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54(2):137–178CrossRefGoogle Scholar
  22. Li C, Boban M, Snyder SA, Kobaku SPR, Kwon G, Mehta G, Tuteja A (2016a) Paper-based surfaces with extreme wettabilities for novel, open-channel microfluidic devices. Adv Fun Mater 26(33):6121–6131CrossRefGoogle Scholar
  23. Li YN, Liu YX, Chen WH, Wang QW, Liu YX, Li J, Yu HP (2016b) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018CrossRefGoogle Scholar
  24. Li YY, Wang CG, Zhang SY (2018) Study on combustion characteristics of lignin in black liquor of kraft pulp. J For Eng 3(2):59–63Google Scholar
  25. Lu Y, Sathasivam S, Song JL, Crick CR, Carmalt CJ, Parkin IP (2015) Robust self-cleaning surfaces that function when exposed to either air or oil. Science 347(6226):1132–1135CrossRefGoogle Scholar
  26. Mertaniemi H, Laukkanen A, Teirfolk J-E, Ikkala O, Ras RHA (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2:2882–2886CrossRefGoogle Scholar
  27. Nagatani A (2017) Characteristics and applications of cellulose nanofiber reinforced rubber composites. Int Polym Sci Technol 44:7–14Google Scholar
  28. Nair SS, Yan N (2015) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22(5):3137–3150CrossRefGoogle Scholar
  29. Nair SS, Kuo PY, Chen HY, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crops Prod 100:208–217CrossRefGoogle Scholar
  30. Neuberg P, Hamaidi I, Danilin S, Ripoll M, Linder V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy JS (2018) Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. Nanoscale 10:1587–1590CrossRefGoogle Scholar
  31. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on –CF3 alignment. Langmuir 15:4321–4323CrossRefGoogle Scholar
  32. Pakdel A, Bando Y, Golberg D (2014) Plasma-assisted interface engineering of boron nitride nanostructure films. ACS Nano 8(10):10631–10639CrossRefGoogle Scholar
  33. Park KC, Choi HJ, Chang CH, Cohen RE, McKinely GH, Barbastathis G (2012) Nanotextured silica surfaces with robust superhydrophobicity omnidirectional broadband supertransmissvity. ACS Nano 6:3789–3799CrossRefGoogle Scholar
  34. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartianinen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866CrossRefGoogle Scholar
  35. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P (2007) Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Mater Chem Phys 103(1):112–117CrossRefGoogle Scholar
  36. Song JL, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28(2):216–238CrossRefGoogle Scholar
  37. Soni B, Hassan EB, Mahmound B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134(10):581–589CrossRefGoogle Scholar
  38. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101(15):5961–5968CrossRefGoogle Scholar
  39. Su FH, Yao K (2014) Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl Mater Interfaces 6(11):8762–8770CrossRefGoogle Scholar
  40. Ta DV, Dunn A, Wasley TJ, Kay RW, Stringer J, Smith PJ, Connaughton C, Shephard JD (2015) Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci 357:248–254CrossRefGoogle Scholar
  41. Teisala H, Tuominen M, Kuusipalo J (2014) Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv Mater Interfaces 1(1):130026CrossRefGoogle Scholar
  42. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton, D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, NREL, Report No. TP-510-42618Google Scholar
  43. Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose-micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89(1):80–88CrossRefGoogle Scholar
  44. Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras RHA (2011) Mechanically durable superhydrophobic surfaces. Adv Mater 23(5):673–678CrossRefGoogle Scholar
  45. Wen JL, Chen TY, Sun RC (2017) Research progress on separation and structural analysis of lignin in lignocellulosic biomass. J For Eng 2(5):76–84Google Scholar
  46. Winter A, Andorfer L, Herzele S, Zimmermann T, Saake B, Edler M, Griesser T, Konnerth J, Gindl-Altmutter W (2017) Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. J Mater Sci 52(1):60–72CrossRefGoogle Scholar
  47. Wu QL, Mei CT, Han JQ, Yue YY, Xu XW (2018) Preparation technology and industrialization status of nanocellulose. J For Eng 3(1):1–9Google Scholar
  48. Yu HY, Qin ZY, Liang BL, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRefGoogle Scholar
  49. Zhang YB, Chen Y, Shi L, Li J, Guo ZG (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22:799–815CrossRefGoogle Scholar
  50. Zhang F, Ren H, Shen LL, Tong GL, Deng YL (2017) Micro-nano structural engineering of filter paper surface for high selective oil-water separation. Cellulose 24:2913–2924CrossRefGoogle Scholar
  51. Zhang TM, Zhang Y, Jiang H, Liu S, Yao Y (2018) Characterization of CNF/CNC composite aerogel. J For Eng 3(5):91–96Google Scholar
  52. Zhou H, Wang HX, Niu HT, Gestos A, Wang XG, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412CrossRefGoogle Scholar
  53. Zhuo X, Liu C, Pan RT, Dong XY, Li YF (2017) Nanocellulose mechanically isolated from Amorpha fruticose Linn. ACS Sustain Chem Eng 5(5):4414–4420CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Paper Science and Technology, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina
  2. 2.Department of Chemical EngineeringUniversity of New BrunswickFrederictonCanada

Personalised recommendations