Advertisement

Cellulose

, Volume 25, Issue 12, pp 6823–6830 | Cite as

Three-dimensional bacterial cellulose-electrospun membrane hybrid structures fabricated through in-situ self-assembly

  • Muhammad Awais Naeem
  • Mensah Alfred
  • Pengfei Lv
  • Huimin Zhou
  • Qufu Wei
Communication
  • 70 Downloads

Abstract

In this work, bacterial cellulose/electrospun membrane three-dimensional (BC/ENM 3D) hybrid structures were fabricated using in-situ self-assembly and characterized by SEM and FTIR. SEM showed as the bacterium extrudes cellulose nanofibrils; they gradually self-assemble to form a unified network on membrane surface and also penetrate into its structure, hence securely binding electrospun nanofiber and interlocking multiple membrane layers to form a stable 3D hybrid scaffold. FTIR results confirmed the presence of BC in the resulting nanocomposites. The permeability and porosity of the scaffold decreased with prolonged fermentation and with increased oxygen ratio as the cellulose grew more quickly.

Graphical Abstract

Keywords

Bacterial cellulose In-situ self-assembly 3D hybrid structures Nanofibers Scaffolds 

Notes

Funding

This work was supported by the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-21), and the 111 Project (B17021).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

10570_2018_2084_MOESM1_ESM.docx (4.9 mb)
Supplementary material 1 (DOCX 5044 kb)

References

  1. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149.  https://doi.org/10.1016/j.biomaterials.2005.10.026 CrossRefPubMedGoogle Scholar
  2. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):30–320.  https://doi.org/10.1002/term.97 CrossRefGoogle Scholar
  3. Bäckdahl H, Risberg B, Gatenholm P (2010) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng 31:14–21CrossRefGoogle Scholar
  4. Bielecki SKA, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Polysaccharides I: polysaccharides from prokaryotes. In: Vandamme E, De Baets S (eds) Biopolymers online. Wiley-VCH, Weinheim, pp 37–46Google Scholar
  5. Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):34–425.  https://doi.org/10.1002/bit.21314 CrossRefGoogle Scholar
  6. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):901–8889.  https://doi.org/10.1016/j.biomaterials.2010.07.108 CrossRefGoogle Scholar
  7. Borzani W, de Souza SJ (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitaded liquid media. Biotech Lett 17(11):1271–1272.  https://doi.org/10.1007/bf00128400 CrossRefGoogle Scholar
  8. Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73(12):4565–4569CrossRefGoogle Scholar
  9. Chatterjee S, Potdar A, Kuhn S, Kumaraswamy G (2018) Preparation of macroporous scaffolds with holes in pore walls and pressure driven flows through them. RSC Adv 8(44):24731–24739.  https://doi.org/10.1039/C8RA03867H CrossRefGoogle Scholar
  10. Cicuéndez M, Malmsten M, Doadrio JC, Portolés MT, Izquierdo-Barba I, Vallet-Regí M (2013) Tailoring hierarchical meso-macroporous 3D scaffolds: from nano to macro. J Mater Chem B 2:49–58CrossRefGoogle Scholar
  11. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):51–145.  https://doi.org/10.1016/j.biomaterials.2005.07.035 CrossRefGoogle Scholar
  12. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine (London) 8(2):98–287.  https://doi.org/10.2217/nnm.12.211 CrossRefGoogle Scholar
  13. Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145.  https://doi.org/10.1007/s10934-010-9364-6 CrossRefGoogle Scholar
  14. Gatenholm, Bodin A, Bäckdahl H, Gustafsson L, Bo Risberg P (2006) Manufacturing and characterization of bacterial cellulose tubes using two different fermentation Techniques. In: Mendez-Vilas A (ed) Modern multidisciplinary applied microbiology. Wiley-VCH, Weinheim, pp 22–619Google Scholar
  15. Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34(10):2421–2427.  https://doi.org/10.1016/j.biomaterials.2012.12.013 CrossRefPubMedGoogle Scholar
  16. Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1(2):270–280Google Scholar
  17. Jun M, He Y, Liu X, Chen W, Wang A, Lin C-Y, Mo X, Ye X (2018) A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomed 13:1553CrossRefGoogle Scholar
  18. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. J Polym Res 18(4):739–744.  https://doi.org/10.1007/s10965-010-9470-9 CrossRefGoogle Scholar
  19. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603.  https://doi.org/10.1016/S0079-6700(01)00021-1 CrossRefGoogle Scholar
  20. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):93–3358.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  21. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):66–5438.  https://doi.org/10.1002/anie.201001273 CrossRefGoogle Scholar
  22. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci AMS 9(3):527–534.  https://doi.org/10.5114/aoms.2013.33433 CrossRefPubMedGoogle Scholar
  23. Levesque SG, Lim RM, Shoichet MS (2005) Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 26(35):46–7436.  https://doi.org/10.1016/j.biomaterials.2005.05.054 CrossRefGoogle Scholar
  24. Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110(2):193–196.  https://doi.org/10.1016/j.matchemphys.2008.01.040 CrossRefGoogle Scholar
  25. Luo H, Xiong G, Yang Z, Raman SR, Si H, Wan Y (2014) A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Adv 4(28):14369–14372.  https://doi.org/10.1039/C4RA00318G CrossRefGoogle Scholar
  26. Mello LR, Feltrin LT, Fontes Neto PT, Ferraz FA (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86(1):50–143.  https://doi.org/10.3171/jns.1997.86.1.0143 CrossRefGoogle Scholar
  27. Naeem M, Lv P, Zhou H, Naveed T, Wei Q (2018) A novel in situ self-assembling fabrication method for bacterial cellulose-electrospun nanofiber hybrid structures. Polymers 10(7):712CrossRefGoogle Scholar
  28. Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJ (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51.  https://doi.org/10.1016/j.carbpol.2015.04.007 CrossRefPubMedGoogle Scholar
  29. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):86–1277.  https://doi.org/10.1007/s00253-011-3432-y CrossRefGoogle Scholar
  30. Sadat-Shojai M, Khorasani MT, Jamshidi A (2016) A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J 289:38–47CrossRefGoogle Scholar
  31. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of acetobacter xylinum. Microbiology 11:123–129Google Scholar
  32. Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1):15–27.  https://doi.org/10.1016/j.memsci.2005.06.065 CrossRefGoogle Scholar
  33. Taboas J, Maddox RD, Krebsbach PH, Hollister S (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194CrossRefGoogle Scholar
  34. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotechnol Biochem 59(8):1498–1502.  https://doi.org/10.1271/bbb.59.1498 CrossRefGoogle Scholar
  35. Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Ubukata M, Yabu H, Tanaka M, Shimomura M (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69:1–6CrossRefGoogle Scholar
  36. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37(5):592–596.  https://doi.org/10.1016/j.ejvs.2009.01.007 CrossRefPubMedGoogle Scholar
  37. Wu Y, Wang L, Guo B, Ma P (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. Acs Nano 11:5646–5659CrossRefGoogle Scholar
  38. Yang W, Yang F, Wang Y, Both SK, Jansen JA (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):12–4505.  https://doi.org/10.1016/j.actbio.2012.10.003 CrossRefGoogle Scholar
  39. Yoshino T, Asakura T, Toda K (1996) Cellulose production by acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36CrossRefGoogle Scholar
  40. Zahedmanesh H, Mackle JN, Sellborn A, Drotz K, Bodin A, Gatenholm P, Lally C (2011) Bacterial cellulose as a potential vascular graft: mechanical characterization and constitutive model development. J Biomed Mater Res B Appl Biomater 97(1):13–105.  https://doi.org/10.1002/jbm.b.31791 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Muhammad Awais Naeem
    • 1
  • Mensah Alfred
    • 1
  • Pengfei Lv
    • 1
  • Huimin Zhou
    • 1
  • Qufu Wei
    • 1
  1. 1.Key Laboratory of Eco-textilesJiangnan UniversityWuxiChina

Personalised recommendations