Advertisement

Cellulose

pp 1–18 | Cite as

Transmission electron microscopy of cellulose. Part 2: technical and practical aspects

  • Yu Ogawa
  • Jean-Luc Putaux
Original Paper

Abstract

Transmission electron microscopy (TEM) has played a significant role in the characterization of cellulosic materials, especially the so-called “nanocelluloses” (nanofibers and nanocrystals), from visualizing nanoscale morphologies to identifying crystal structures. With scientific and industrial interest in nanocelluloses rapidly increasing, this technique is more important than ever for scientists, engineers and students. Mastering TEM techniques for cellulosic materials is not trivial for a number of reasons, the main one being the high sensitivity of cellulose crystals to electron beam damage. In this contribution, practical aspects of sample preparation, contrast enhancing protocols as well as specific imaging and diffraction techniques are described to facilitate the morphological and structural characterization of cellulose by TEM in imaging and electron diffraction modes. We especially emphasize the importance of controlling the radiation dose to record well-resolved images of cellulose crystals with meaningful structural detail.

Graphical abstract

Keywords

Cellulose Nanocellulose Transmission electron microscopy Electron diffraction 

Notes

Acknowledgments

Most TEM images and diffraction diagrams displayed in this article have specifically been recorded for this paper using a FEI-Philips CM200 ‘Cryo’ microscope operating at 80 or 200 kV. Most images have been recorded with a TVIPS TemCam F216 digital 2 K camera. The authors would like to thank the NanoBio-ICMG Platform (FR 2607) for granting access to the Electron Microscopy facility, Christine Lancelon-Pin for her technical help, as well as our colleagues who have prepared the nanocellulose specimens that have been observed. We are extremely grateful to Henri Chanzy for sharing with us his vast knowledge of transmission electron microscopy of polysaccharides and for critically reading, and thus improving, this manuscript.

References

  1. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794.  https://doi.org/10.1007/s10570-013-9871-0 CrossRefGoogle Scholar
  2. Aebi U, Pollard TD (1987) A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J Electron Microsc Tech 7:29–33.  https://doi.org/10.1002/jemt.1060070104 CrossRefPubMedGoogle Scholar
  3. Azzam F, Siqueira E, Fort S, Hassaini R, Pignon F, Travelet C, Putaux J-L, Jean B (2016) Tunable aggregation and gelation of thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromolecules 17:2112–2119.  https://doi.org/10.1021/acs.biomac.6b00344 CrossRefPubMedGoogle Scholar
  4. Bourret A, Chanzy H, Lazaro R (1972) Crystallite features of Valonia cellulose by electron diffraction and dark field microscopy. Biopolymers 11:893–898CrossRefGoogle Scholar
  5. Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114.  https://doi.org/10.1021/acs.langmuir.6b01376 CrossRefPubMedGoogle Scholar
  6. Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Morphology and structure of cellulose nanocrystals prepared from bamboo fibers. Cellulose 19:1527–1536.  https://doi.org/10.1007/s10570-012-9738-9 CrossRefGoogle Scholar
  7. Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci A 33:1345–1373.  https://doi.org/10.1080/10601329608014912 CrossRefGoogle Scholar
  8. Chanzy HD (1975) Irradiation de la cellulose de Valonia au microscope à 1 MV. Bulletin BIST CEA 207:55–57Google Scholar
  9. Chanzy HD, Roche EJ (1976) Fibrous transformation of Valonia cellulose I into cellulose II. Appl Polym Symp 28:701–711Google Scholar
  10. Chanzy H, Henrissat B, Vincendon M, Tanner SF, Belton PS (1987) Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose I → cellulose IIII transformation in Valonia. Carbohydr Res 160:1–11.  https://doi.org/10.1016/0008-6215(87)80299-9 CrossRefGoogle Scholar
  11. Chauve G, Fraschini C, Jean B (2014) Separation of cellulose nanocrystals. In: Oksman K, Mathew AP, Bismark A, Rojas O, Sain M (eds) Handbook of green materials: processing technologies, properties and applications, vol 1. World Scientific Publishing Co, Singapore, pp 73–87.  https://doi.org/10.1142/9789814566469_0006 CrossRefGoogle Scholar
  12. Chinga-Carrasco G (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:417.  https://doi.org/10.1186/1556-276X-6-417 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ciesielski PN, Matthews JF, Tucker MP, Beckham GT, Crowley MF, Himmel ME, Donohoe BS (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS Nano 7:8011–8019.  https://doi.org/10.1021/nn4031542 CrossRefPubMedGoogle Scholar
  14. Dobb MG, Murray R (1974) Towards higher resolution in electron beam sensitive specimens of biological origin. J Microsc 101:299–309.  https://doi.org/10.1111/j.1365-2818.1974.tb03955.x CrossRefGoogle Scholar
  15. Dubochet J, Ducommun M, Zollinger M, Kellenberger E (1971) A new preparation method for dark-field electron microscopy of biomacromolecules. J Ultrastruct Res 35:147–167.  https://doi.org/10.1016/S0022-5320(71)80148-X CrossRefPubMedGoogle Scholar
  16. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228CrossRefGoogle Scholar
  17. Dufresne A (2013) Nanocellulose: a new ageless material. Mater Today 16:220–227.  https://doi.org/10.1016/j.mattod.2013.06.004 CrossRefGoogle Scholar
  18. Dunstone MA, de Marco A (2017) Cryo-electron tomography: an ideal method to study membrane-associated proteins. Phil Trans R Soc B 372:20160210.  https://doi.org/10.1098/rstb.2016.0210 CrossRefPubMedGoogle Scholar
  19. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315.  https://doi.org/10.1039/c0sm00142b CrossRefGoogle Scholar
  20. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65.  https://doi.org/10.1021/bm700769p CrossRefPubMedGoogle Scholar
  21. Faria-Tischer PCS, Tischer CA, Heux L, Le Denmat S, Picart C, Sierakowski M-R, Putaux J-L (2015) Preparation of cellulose II and III films by allomorphic conversion of bacterial cellulose I pellicles. Mater Sci Eng C 51:167–173.  https://doi.org/10.1016/j.msec.2015.02.025 CrossRefGoogle Scholar
  22. Favier V, Chanzy H, Cavaillé J-Y (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367.  https://doi.org/10.1021/ma00122a053 CrossRefGoogle Scholar
  23. Flauzino Neto WP, Putaux J-L, Mariano M, Ogawa Y, Otaguro H, Pasquini D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027.  https://doi.org/10.1039/c6ra16295a CrossRefGoogle Scholar
  24. Foster JEJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekaraq N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679.  https://doi.org/10.1039/c6cs00895j CrossRefPubMedGoogle Scholar
  25. Frank J (2008) Electron tomography: methods for three-dimensional visualization of structures in the cell. Springer, BerlinGoogle Scholar
  26. Fridman K, Mader A, Zwerger M, Elia N, Medalia O (2012) Advances in tomography: probing the molecular architecture of cells. Nat Rev Mol Cell Biol 13:736–742.  https://doi.org/10.1038/nrm3453 CrossRefPubMedGoogle Scholar
  27. Fujiyoshi Y, Kobayashi T, Ishizuka K, Uyeda N, Ishida Y, Harada Y (1980) A new method for optimal-resolution electron microscopy of radiation-sensitive specimens. Ultramicroscopy 5:459–468.  https://doi.org/10.1016/S0304-3991(80)80004-0 CrossRefGoogle Scholar
  28. Fumagalli M, Berriot J, de Gaudemaris B, Veyland A, Putaux J-L, Molina-Boisseau S, Heux L (2018) Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement. Soft Matter 14:2638–2648.  https://doi.org/10.1039/C8SM00210J CrossRefPubMedGoogle Scholar
  29. Glauert AM (1975) Fixation, dehydration and embedding of biological specimens. Elsevier, North-Holland/AmericanGoogle Scholar
  30. Grubb D (1974) Radiation damage and electron microscopy of organic polymers. J Mater Sci 9:1715–1736CrossRefGoogle Scholar
  31. Habibi Y, Lucia LA, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500.  https://doi.org/10.1021/cr900339w CrossRefPubMedGoogle Scholar
  32. Harris JR (1997) Negative staining and cryoelectron microscopy: the thin film techniques. RMS Microscopy Handbook. BIOS Scientific Publishers, OxfordCrossRefGoogle Scholar
  33. Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998a) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50.  https://doi.org/10.1006/jsbi.1998.4045 CrossRefPubMedGoogle Scholar
  34. Helbert W, Sugiyama J, Kimura S, Itoh T (1998b) High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma 203:84–90.  https://doi.org/10.1007/BF01280590 CrossRefGoogle Scholar
  35. Hinkle JD, Ciesielski PN, Gruchalla K, Munch KR, Donohoe BS (2015) Biomass accessibility analysis using electron tomography. Biotechnol Biofuels 8:212.  https://doi.org/10.1186/s13068-015-0395-8 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328CrossRefGoogle Scholar
  37. Horikawa Y, Sugiyama J (2009) Localization of crystalline allomorphs in cellulose microfibril. Biomacromolecules 10:2235–2239.  https://doi.org/10.1021/bm900413k CrossRefPubMedGoogle Scholar
  38. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31:6275–6279.  https://doi.org/10.1021/ma980664h CrossRefGoogle Scholar
  39. Imai T, Putaux J-L, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose. Polymer 44:1871–1879.  https://doi.org/10.1016/S0032-3861(02)00861-3 CrossRefGoogle Scholar
  40. Jakubek ZJ, Chen M, Couillard M, Leng T, Liu L, Zou S, Baxa U, Clogston JD, Hamad WY, Johnston LJ (2018) Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J Nanoparticle Res 20:98.  https://doi.org/10.1007/s11051-018-4194-6 CrossRefGoogle Scholar
  41. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189.  https://doi.org/10.1007/s10570-018-1723-5 CrossRefGoogle Scholar
  42. Kaushik M, Chen WC, van de Ven TGM, Moores A (2014) An improved methodology for imaging cellulose nanocrystals by transmission electron microscopy. Nord Pulp Paper Res J 29:77–84.  https://doi.org/10.3183/NPPRJ-2014-29-01-p077-084 CrossRefGoogle Scholar
  43. Kaushik M, Fraschini C, Chauve G, Putaux J-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In Maaz K (ed) The transmission electron microscope—theory and applications. InTech, pp 129–163.  https://doi.org/10.5772/60985 Google Scholar
  44. Kim N-H, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203.  https://doi.org/10.1006/jsbi.1996.0083 CrossRefPubMedGoogle Scholar
  45. Kimura S, Itoh T (1995) Evidence for the role of the glomerulocyte in cellulose synthesis in the tunicate Metandrocarpa uedai. Protoplasma 186:24–33.  https://doi.org/10.1007/BF01276931 CrossRefGoogle Scholar
  46. Kimura S, Itoh T (2004) Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383.  https://doi.org/10.1023/B:CELL.0000046414.72903.33 CrossRefGoogle Scholar
  47. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefGoogle Scholar
  48. Klemm D, Cranston E, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfuß F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21:720–748.  https://doi.org/10.1016/j.mattod.2018.02.001 CrossRefGoogle Scholar
  49. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76.  https://doi.org/10.1006/jsbi.1996.0013 CrossRefPubMedGoogle Scholar
  50. Kuga S, Brown RM Jr (1987) Practical aspects of lattice imaging of cellulose. J Electron Microsc Tech 6:349–356.  https://doi.org/10.1002/jemt.1060060405 CrossRefGoogle Scholar
  51. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488.  https://doi.org/10.1021/la903111j CrossRefPubMedGoogle Scholar
  52. Li X, Mooney P, Zheng S, Booth C, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM. Nat Methods 10:584–590.  https://doi.org/10.1038/nmeth.2472 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325.  https://doi.org/10.1016/j.eurpolymj.2014.07.025 CrossRefGoogle Scholar
  54. Majoinen J, Haataja JS, Appelhans D, Lederer A, Olszewska A, Seitsonen J, Aseyev V, Kontturi E, Rosilo H, Österberg M, Houbenov N, Ikkala O (2014) Supracolloidal multivalent interactions and wrapping of dendronized glycopolymers on native cellulose nanocrystals. J Am Chem Soc 136:866–869.  https://doi.org/10.1021/ja411401r CrossRefPubMedGoogle Scholar
  55. Majoinen J, Hassinen J, Haataja JS, Rekola HT, Kontturi E, Kostiainen MA, Ras RHA, Törmä P, Ikkala O (2016) Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv Mater 28:5262–5267.  https://doi.org/10.1002/adma.201600940 CrossRefPubMedGoogle Scholar
  56. Manley RStJ (1971) Molecular morphology of cellulose. J Polym Sci A 2(9):1025–1059.  https://doi.org/10.1002/pol.1971.160090604 CrossRefGoogle Scholar
  57. Michen B, Geers C, Vanhecke D, Endes C, Rothen-Rutishauser B, Balog S, Petri-Fink A (2015) Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci Rep 5:9793.  https://doi.org/10.1038/srep09793 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511.  https://doi.org/10.1016/0006-3002(53)90295-9 CrossRefPubMedGoogle Scholar
  59. Nakashima K, Nishino A, Horikawa Y, Hirose E, Sugiyama J, Satoh N (2011) The crystalline phase of cellulose changes under developmental control in a marine chordate. Cell Mol Life Sci 68:1623–1631.  https://doi.org/10.1007/s00018-010-0556-7 CrossRefPubMedGoogle Scholar
  60. Näslund P, Vuong R, Chanzy H, Jésior J-C (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417.  https://doi.org/10.1177/004051758805800707 CrossRefGoogle Scholar
  61. Navon Y, Radavidson H, Putaux J-L, Jean B, Heux L (2017) pH-Sensitive interactions between cellulose nanocrystals and DOPC liposomes. Biomacromolecules 18:2918–2927.  https://doi.org/10.1021/acs.biomac.7b00872 CrossRefPubMedGoogle Scholar
  62. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249.  https://doi.org/10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  63. Ogawa Y, Chanzy H, Putaux J-L Transmission electron microscopy of cellulose. Part 1: historical perspective.  https://doi.org/10.1007/s10570-018-2076-9
  64. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18.  https://doi.org/10.1016/j.compositesa.2015.10.041 CrossRefGoogle Scholar
  65. Preston RD (1971) Negative staining and cellulose microfibril size. J Microsc 93:7–13.  https://doi.org/10.1111/j.1365-2818.1971.tb02260.x CrossRefGoogle Scholar
  66. Preston R, Ripley G (1954) Electron diffraction diagrams of cellulose micro-fibrils in Valonia. Nature 174:76–77CrossRefGoogle Scholar
  67. Rånby B (1952a) Physico-chemical investigations on animal cellulose (Tunicin). Arkiv för Kemi 4:241–248Google Scholar
  68. Rånby B (1952b) Physico-chemical investigations on bacterial cellulose. Arkiv för Kemi 4:249–255Google Scholar
  69. Reid N (1975) Practical methods in electron microscopy: ultramicrotomy. Elsevier, North-Holland/AmericanGoogle Scholar
  70. Reid M, Villalobos M, Cranston E (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598.  https://doi.org/10.1021/acs.langmuir.6b03765 CrossRefPubMedGoogle Scholar
  71. Revol J-F (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134.  https://doi.org/10.1016/0144-8617(82)90058-3 CrossRefGoogle Scholar
  72. Revol J-F (1985) Change of the d-spacing in cellulose crystals during lattice imaging. J Mater Sci Lett 4:1347–1349.  https://doi.org/10.1007/BF00720097 CrossRefGoogle Scholar
  73. Revol J-F, Goring DAI (1983) Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24:1547–1550.  https://doi.org/10.1016/0032-3861(83)90168-4 CrossRefGoogle Scholar
  74. Reza M, Ruokolainen J, Vuorinen T (2014) Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy. Planta 240:565–573.  https://doi.org/10.1007/s00425-014-2107-1 CrossRefPubMedGoogle Scholar
  75. Reza M, Kontturi E, Jäskelainen A-S, Vuorinen T, Ruokolainen J (2015) Transmission electron microscopy for wood and fiber analysis—a review. BioResources 10:6230–6261Google Scholar
  76. Reza M, Bertinetto C, Ruokolainen J, Vuorinen T (2017) Cellulose elementary fibrils assemble into helical bundles in S1 layer of spruce tracheid wall. Biomacromolecules 18:374–378.  https://doi.org/10.1021/acs.biomac.6b01396 CrossRefPubMedGoogle Scholar
  77. Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10, Chapter 6. Elsevier, North-Holland, pp 309–459Google Scholar
  78. Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206.  https://doi.org/10.1016/0141-8130(81)90064-7 CrossRefGoogle Scholar
  79. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691.  https://doi.org/10.1021/bm060154s CrossRefPubMedGoogle Scholar
  80. Saito T, Kuramae R, Wohlvert J, Berglund L, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose microfibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253.  https://doi.org/10.1021/bm301674e CrossRefPubMedGoogle Scholar
  81. Schappacher M, Putaux J-L, Lefebvre C, Deffieux A (2005) Molecular containers based on amphiphilic PS-b-PMVE dendrigraft copolymers: topology, organization and aqueous solution properties. J Am Chem Soc 127:2990–2998.  https://doi.org/10.1021/ja0440203 CrossRefPubMedGoogle Scholar
  82. Skogberg A, Mäki A-J, Mettänen M, Lahtinen P, Kallio P (2017) Cellulose nanofiber alignment using evaporation-induced droplet-casting, and cell alignment on aligned nanocellulose surfaces. Biomacromolecules 18:3936–3953.  https://doi.org/10.1021/acs.biomac.7b00963 CrossRefPubMedGoogle Scholar
  83. Stinson-Bagby KL, Roberts R, Foster EJ (2018) Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr Polym 186:429–438.  https://doi.org/10.1016/j.carbpol.2018.01.054 CrossRefPubMedGoogle Scholar
  84. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985a) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168CrossRefGoogle Scholar
  85. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985b) Observations of cellulose microfibrils in Valonia macrophysa by high resolution electron microscopy. Mokuzai Gakkaishi 31:61–67Google Scholar
  86. Sugiyama J, Otsuka Y, Murase H, Harada H (1986) Toward direct imaging of cellulose microfibrils in wood. Holzforschung 40(Suppl):31–36Google Scholar
  87. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175.  https://doi.org/10.1021/ma00014a033 CrossRefGoogle Scholar
  88. Talmon Y (1987) Electron beam radiation damage to organic and biological cryospecimens. In: Steinbrecht RA, Zieorld K (eds) Cryotechniques in biological electron microscopy, Chapter 3. Springer, Berlin, pp 64–84CrossRefGoogle Scholar
  89. Tanaka R, Kuribayashi T, Ogawa Y, Saito T, Isogai A, Nishiyama Y (2017) Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry. Cellulose 24:3231–3242.  https://doi.org/10.1007/s10570-017-1334-6 CrossRefGoogle Scholar
  90. Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201.  https://doi.org/10.1016/j.foodhyd.2017.08.027 CrossRefGoogle Scholar
  91. Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:7564.  https://doi.org/10.1038/ncomms8564 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wade RH (1984) The temperature dependence of radiation damage in organic and biological materials. Ultramicroscopy 14:265–270.  https://doi.org/10.1016/0304-3991(84)90094-9 CrossRefGoogle Scholar
  93. Walker M, Knight P, Trinick J (1985) Negative staining of myosin molecules. J Mol Biol 184:535–542.  https://doi.org/10.1016/0022-2836(85)90300-6 CrossRefPubMedGoogle Scholar
  94. Watt IM (1997) The principles and practice of electron microscopy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  95. Zhang Y, Cheng Q, Chang C, Zhang L (2018) Phase transition identification of cellulose nanocrystal suspensions derived from various raw materials. J Appl Polym Sci 135:45702.  https://doi.org/10.1002/APP.45702 CrossRefGoogle Scholar
  96. Zoppe JO, Dupire AVM, Lachat TGG, Lemal P, Rodriguez-Lorenzo L, Petri-Fink A, Weder C, Klok H-A (2017) Cellulose nanocrystals with tethered polymer chains: chemically patchy versus uniform decoration. ACS Macro Lett 6:892–897.  https://doi.org/10.1021/acsmacrolett.7b00383 CrossRefGoogle Scholar
  97. Zuluaga R, Putaux J-L, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59.  https://doi.org/10.1016/j.carbpol.2008.09.024 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, CERMAVGrenobleFrance

Personalised recommendations