Advertisement

Cellulose

, Volume 25, Issue 12, pp 7277–7297 | Cite as

A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine

  • Manja Kurečič
  • Tina Maver
  • Natalija Virant
  • Alenka Ojstršek
  • Lidija Gradišnik
  • Silvo Hribernik
  • Mitja Kolar
  • Uroš Maver
  • Karin Stana Kleinschek
Original Paper
  • 83 Downloads

Abstract

Novel multifunctional bio-based nanofibrous mats were prepared which contain the commonly used pain reducing local anesthetic benzocaine (BZC) and the in situ pH-detecting dye bromocresol green (BCG). These can serve as a dual nano-carrier system for wound healing applications, especially in the treatment of infected wounds. BZC and BCG were introduced into cellulose acetate (CA) based nanofibers using a single-step needleless electrospinning process. The resulting CA nanofibers show a homogenous fiber diameter distribution around 600 nm, hydrophobicity with a water contact angle of 134°, and simultaneous porosities on the nano-micro- scale. In spite of their hydrophobic character, the nanofibrous mats showed a huge water absorption capacity (1657%), as well as good stability at physiological pH (negligible degradation). All the mentioned properties remain unchanged upon the inclusion of either BZC or BCG. Results from the in vitro drug release studies showed a pH dependent (i.e. controllable) release of BZC, and confirmed the expected maximum drug release rate at pH 9.0, which would correspond clinically to the pH of an infected wound. The accompanying color change of the nanofibrous mats, provided through the encapsulated BCG (from yellow to blue), is noticeable within a few seconds after the pH changes from acidic to alkaline. This rapid response of NSAID, together with the visible absorption of included dye, show the capacity of the proposed nanofibrous mats as an in situ pH-detecting system. Finally, the biocompatibility of the proposed nanofibrous mats was proven using human skin fibroblast cells, confirming their potential to be used in wound treatment.

Graphical abstract

Keywords

Benzocaine Bromocrezol green Point-of-care Biosensor Cellulose acetate nanofibers Drug delivery pH indicator 

Notes

Acknowledgments

The authors would like to acknowledge the financial support for this research received from the Slovenian Research Agency (Grants Numbers: P2-0118, P3-0036, L2-5492, Z2-8168, I0-0029 and P1-0153).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10570_2018_2057_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1415 kb)

References

  1. Agarwal A, Raheja A, Natarajan T, Chandra T (2012) Development of universal pH sensing electrospun nanofibers. Sens Actuators B Chem 161(1):1097–1101CrossRefGoogle Scholar
  2. Bai X, Son SJ, Zhang SX, Liu W, Jordan EK, Frank JA, Venkatesan T, Lee SB (2008) Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling. Nanomedicine 3(2):163–174CrossRefGoogle Scholar
  3. Bhowmick S, Rother S, Zimmermann H, Lee PS, Moeller S, Schnabelrauch M, Koul V, Jordan R, Hintze V, Scharnweber D (2017) Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application—the role of chondroitin sulfate and sulfated hyaluronan. Mater Sci Eng, C 79:15–22CrossRefGoogle Scholar
  4. Caldara M, Colleoni C, Guido E, Re V, Rosace G (2016) Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens Actuators B Chem 222:213–220CrossRefGoogle Scholar
  5. Candido RG, Gonçalves AR (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohyd Polym 152(Suppl C):679–686CrossRefGoogle Scholar
  6. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine 12(11):1335–1352CrossRefGoogle Scholar
  7. Dagnon KL, Shanmuganathan K, Weder C, Rowan SJ (2012) Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules 45(11):4707–4715CrossRefGoogle Scholar
  8. Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41(Suppl C):30–42CrossRefGoogle Scholar
  9. Derikvand F, Yin DT, Barrett R, Brumer H (2016) Cellulose-based biosensors for esterase detection. Anal Chem 88(6):2989–2993CrossRefGoogle Scholar
  10. Deshwal GK, Panjagari NR (2018) Electrospun structures for dairy and food packaging applications. Res Rev J Dairy Sci Technol 6(1):17–23Google Scholar
  11. Devarayan K, Kim B-S (2015) Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens Actuators B Chem 209:281–286CrossRefGoogle Scholar
  12. Dias J, Baptista-Silva S, Sousa A, Oliveira A, Bártolo P, Granja P (2018) Biomechanical performance of hybrid electrospun structures for skin regeneration. Mater Sci Eng, C 93:816–827CrossRefGoogle Scholar
  13. Dobrila Z, Ljiljana S, Ljiljana Z (1990) Spectrophotometric determination of tilidine using bromocresol green and bromophenol blue. Acta Pharm Hung 60(5–6):179–181PubMedGoogle Scholar
  14. Edwards JV, Fontenot KR, Liebner F, Condon BD (2018) Peptide-cellulose conjugates on cotton-based materials have protease sensor/sequestrant activity. Sensors 18(7):2334.  https://doi.org/10.3390/s18072334 CrossRefGoogle Scholar
  15. Finšgar M, Uzunalić AP, Stergar J, Gradišnik L, Maver U (2016) Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci Rep 6:26653CrossRefGoogle Scholar
  16. Fuliaş A, Ledeţi I, Vlase G, Popoiu C, Hegheş A, Bilanin M, Vlase T, Gheorgheosu D, Craina M, Ardelean S (2013) Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J 7(1):140CrossRefGoogle Scholar
  17. Gašparič P, Kurečič M, Kargl R, Maver U, Gradišnik L, Hribernik S, Kleinschek KS, Smole MS (2017) Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human osteoblasts. Carbohyd Polym 177:388–396CrossRefGoogle Scholar
  18. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4):759–762CrossRefGoogle Scholar
  19. Ismaiel S, Yassa D, Gad-El-Rub L (1975) Spectrophotometric determination of lidocaine in some pharmaceutical preparations using bromocresol green. Pharmazie 30(6):408PubMedGoogle Scholar
  20. Jankowska DA, Bannwarth MB, Schulenburg C, Faccio G, Maniura-Weber K, Rossi RM, Scherer L, Richter M, Boesel LF (2017) Simultaneous detection of pH value and glucose concentrations for wound monitoring applications. Biosens Bioelectron 87:312–319CrossRefGoogle Scholar
  21. Kamal H, Abd-Elrahim FM, Lotfy S (2014) Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. J Radiat Res Appl Sci 7(2):146–153CrossRefGoogle Scholar
  22. Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447CrossRefGoogle Scholar
  23. Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Murković Steinberg I (2017) Smart bandage with wireless connectivity for optical monitoring of pH. Sens Actuators B Chem 246:455–460CrossRefGoogle Scholar
  24. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, Dorkoosh FA, Haghpanah V, Khorramizadeh MR (2018) Cellulose acetate electrospun nanofibers for drug delivery systems: applications and recent advances. Carbohydr Polym 198:131–141CrossRefGoogle Scholar
  25. Kiaee G, Mostafalu P, Samandari M, Sonkusale S (2017) A pH-mediated electronic wound dressing for controlled drug delivery. Tufts University, ProQuest Dissertations PublishingGoogle Scholar
  26. Kruse CR, Singh M, Targosinski S, Sinha I, Sorensen JA, Eriksson E, Nuutila K (2017) The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair Regen 25(2):260–269CrossRefGoogle Scholar
  27. Kurečič M, Sfiligoj Smole M (2013) Electrospinning: nanofibre production method. Tekstilec 56(1):4–12CrossRefGoogle Scholar
  28. Li X-Y, Zheng Z-B, Yu D-G, Liu X-K, Qu Y-L, Li H-L (2017) Electrosprayed sperical ethylcellulose nanoparticles for an improved sustained-release profile of anticancer drug. Cellulose 24(12):5551–5564CrossRefGoogle Scholar
  29. Li J-J, Yang Y-Y, Yu D-G, Du Q, Yang X-L (2018) Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur J Pharm Sci 122:195–204CrossRefGoogle Scholar
  30. Lim Y-M, Gwon H-J, Jeun JP, Nho Y-C (2010) Preparation of cellulose-based nanofibers using electrospinning. In: Kumar A (ed) Nanofibers. InTech, CroatiaGoogle Scholar
  31. Marjanović B, Juranić I, Ćirić-Marjanović G, Pašti I, Trchová M, Holler P (2011) Chemical oxidative polymerization of benzocaine. React Funct Polym 71(7):704–712CrossRefGoogle Scholar
  32. Maver U, Bele M, Jamnik J, Gaberšček M, Planinšek O (2013) A fast and simple method for preparation of calcium carbonate–drug composites for fast drug release. Mater Res Bull 48(1):137–145CrossRefGoogle Scholar
  33. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015a) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRefGoogle Scholar
  34. Maver T, Maver U, Kleinschek KS, Raščan IM, Smrke DM (2015b) Advanced therapies of skin injuries. Wien Klin Wochenschr 127(5):187–198CrossRefGoogle Scholar
  35. Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke DM, Stana-Kleinschek K (2015c) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22(1):749–761CrossRefGoogle Scholar
  36. Maver T, Maver U, Stana Kleinschek K, Smrke DM, Kreft S (2015d) A review of herbal medicines in wound healing. Int J Dermatol 54(7):740–751CrossRefGoogle Scholar
  37. Maver T, Kurečič M, Smrke D, Kleinschek KS, Maver U (2016) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Technol 79(3):475–486CrossRefGoogle Scholar
  38. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke D, Maver U, Kleinschek KS (2017a) Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm 529(1–2):576–588CrossRefGoogle Scholar
  39. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, Kleinschek KS (2017b) Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm 529(1–2):576–588CrossRefGoogle Scholar
  40. Maver T, Smrke DM, Kurečič M, Gradišnik L, Maver U, Kleinschek KS (2018a) Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. J Sol-Gel Sci Technol 88(1):33–48CrossRefGoogle Scholar
  41. Maver U, Xhanari K, Zizek M, Korte D, Gradisnik L, Franko M, Finsgar M (2018b) A combination of interdisciplinary analytical tools for evaluation of multi-layered coatings on medical grade stainless steel for biomedical applications. Eur J Pharm Biopharm 128:230–246CrossRefGoogle Scholar
  42. Mehrabi F, Shamspur T, Mostafavi A, Saljooqi A, Fathirad F (2017) Synthesis of cellulose acetate nanofibers and its application in the release of some drugs. Nanomed Res J 2(3):199–207Google Scholar
  43. Mohan T, Hribernik S, Kargl R, Stana-Kleinschek K (2015a) Nanocellulosic materials in tissue engineering applications. In: Poletto M, Ornaghi HL Jr (eds) Cellulose-fundamental aspects and current trends. InTech, Caxias do SulGoogle Scholar
  44. Mohan T, Kargl R, Tradt KE, Kulterer MR, Braćić M, Hribernik S, Stana-Kleinschek K, Ribitsch V (2015b) Antifouling coating of cellulose acetate thin films with polysaccharide multilayers. Carbohyd Polym 116:149–158CrossRefGoogle Scholar
  45. Mouriño V (2018) Nanoelectrospun matrices for localized drug delivery. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Elsevier, pp 491–508Google Scholar
  46. Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15(12):771–785CrossRefGoogle Scholar
  47. Nadrah P, Maver U, Jemec A, Tišler T, Bele M, Dražić G, Benčina M, Pintar A, Planinšek O, Gaberšček M (2013) Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica. ACS Appl Mater Interfaces 5(9):3908–3915CrossRefGoogle Scholar
  48. Nagoba BS, Suryawanshi NM, Wadher B, Selkar S (2015) Acidic environment and wound healing: a review. Wounds Compend Clin Res Pract 27(1):5–11Google Scholar
  49. Organization WH (2015) World report on ageing and health. World Health Organization, GenevaGoogle Scholar
  50. Pal A, Goswami D, Cuellar HE, Castro B, Kuang S, Martinez RV (2018) Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens Bioelectron 117:696–705CrossRefGoogle Scholar
  51. Pallás I, Marcos MD, Martínez-Máñez R, Ros-Lis JV (2017) Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids. Sensors 17(9):2134CrossRefGoogle Scholar
  52. Park JW, Hwang SR, Yoon I-S (2017) Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22(8):1259CrossRefGoogle Scholar
  53. Payn MM, Lawrence D, Willis R, Lamb EJ (2002) Sample matrix is critical in the evaluation of a dry-slide bromocresol green method for human albumin. Ann Clin Biochem 39(3):311–313CrossRefGoogle Scholar
  54. Percival SL, McCarty S, Hunt JA, Woods EJ (2014) The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen 22(2):174–186CrossRefGoogle Scholar
  55. Perrin DD (1965) Dissociation constants of organic bases in aqueous solution. Butterworths, LondonGoogle Scholar
  56. Phiriyawirut M, Phaechamud T (2012) Gallic acid-loaded cellulose acetate electrospun nanofibers: thermal properties, mechanical properties, and drug release behavior. Open J Polym Chem 2(01):21CrossRefGoogle Scholar
  57. Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A, Fattahi A, Sheervalilou R, Zarghami N (2018) An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev Med Chem 18(5):414–427CrossRefGoogle Scholar
  58. Power G, Moore Z, O’Connor T (2017) Measurement of pH, exudate composition and temperature in wound healing: a systematic review. J Wound Care 26(7):381–397CrossRefGoogle Scholar
  59. Raggi M, Cavrini V, Di Pietra A (1985) A calorimetric assay for dicyclomine hydrochloride using bromocresol green. J Pharm Biomed Anal 3(3):287–291CrossRefGoogle Scholar
  60. Rahimi R, Ochoa M, Parupudi T, Zhao X, Yazdi IK, Dokmeci MR, Tamayol A, Khademhosseini A, Ziaie B (2016) A low-cost flexible pH sensor array for wound assessment. Sens Actuators B Chem 229:609–617CrossRefGoogle Scholar
  61. Rahimi R, Brener U, Chittiboyina S, Soleimani T, Detwiler DA, Lelièvre SA, Ziaie B (2018) Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in situ monitoring of wound infection. Sens Actuators B Chem 267:198–207CrossRefGoogle Scholar
  62. Rodkey FL (1964) Binding of bromocresol green by human serum albumin. Arch Biochem Biophys 108(3):510–513CrossRefGoogle Scholar
  63. Roemhild K, Niemz F, Mohan T, Hribernik S, Kurecic M, Ganser C, Teichert C, Spirk S (2016) The cellulose source matters—hollow semi spheres or fibers by needleless electrospinning. Macromol Mater Eng 301(1):42–47CrossRefGoogle Scholar
  64. Rošic R, Pelipenko J, Kristl J, Kocbek P, Bešter-Rogač M, Baumgartner S (2013) Physical characteristics of poly (vinyl alcohol) solutions in relation to electrospun nanofiber formation. Eur Polymer J 49(2):290–298CrossRefGoogle Scholar
  65. Sabadini E, Carvalho LVC (2013) Visual demonstration of the ionic strength effect in the classroom: the Debye–Hückel limiting law. Quim Nova 36(1):187–189CrossRefGoogle Scholar
  66. Salvo P, Dini V, Kirchhain A, Janowska A, Oranges T, Chiricozzi A, Lomonaco T, Di Francesco F, Romanelli M (2017) Sensors and biosensors for c-reactive protein, temperature and ph, and their applications for monitoring wound healing: a review. Sensors 17(12):2952CrossRefGoogle Scholar
  67. Sayhan H, Beyaz SG, Çeliktaş A (2017) The local anesthetic and pain relief activity of alkaloids. In: Alkaloids-alternatives in synthesis, modification and application. InTechGoogle Scholar
  68. Sheets AR, Hwang CK, Herman IM (2016) Developing “smart” point-of-care diagnostic tools for “next-generation” wound care, Chap. 17. In: Laurence J (ed) Translating regenerative medicine to the clinic. Academic Press, Boston, pp 251–264.  https://doi.org/10.1016/B978-0-12-800548-4.00017-6 CrossRefGoogle Scholar
  69. Stergar J, Ban I, Gradišnik L, Maver U (2018) Novel drug delivery system based on NiCu nanoparticles for targeting various cells. J Sol-Gel Sci Technol 88(1):57–65CrossRefGoogle Scholar
  70. Su W-H, Cheng M-H, Lee W-L, Tsou T-S, Chang W-H, Chen C-S, Wang P-H (2010) Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation? Mediat Inflamm 2010:413238.  https://doi.org/10.1155/2010/413238 CrossRefGoogle Scholar
  71. Taajamaa L, Kontturi E, Laine J, Rojas OJ (2012) Bicomponent fibre mats with adhesive ultra-hydrophobicity tailored with cellulose derivatives. J Mater Chem 22(24):12072–12082CrossRefGoogle Scholar
  72. Tarus B, Fadel N, Al-Oufy A, El-Messiry M (2016) Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alex Eng J 55(3):2975–2984CrossRefGoogle Scholar
  73. Tsekova PB, Spasova MG, Manolova NE, Markova ND, Rashkov IB (2017) Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng, C 73:206–214CrossRefGoogle Scholar
  74. Tungprapa S, Jangchud I, Supaphol P (2007a) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48(17):5030–5041CrossRefGoogle Scholar
  75. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007b) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575CrossRefGoogle Scholar
  76. Üstündağ Okur N, Çağlar EŞ, Arpa MD, Karasulu HY (2017) Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm Dev Technol 22(4):500–510CrossRefGoogle Scholar
  77. Van der Schueren L, Mollet T, Ceylan Ö, De Clerck K (2010) The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur Polym J 46(12):2229–2239CrossRefGoogle Scholar
  78. Van der Schueren L, De Meyer T, Steyaert I, Ceylan Ö, Hemelsoet K, Van Speybroeck V, De Clerck K (2013) Polycaprolactone and polycaprolactone/chitosan nanofibres functionalised with the pH-sensitive dye Nitrazine Yellow. Carbohyd Polym 91(1):284–293CrossRefGoogle Scholar
  79. Wang Q, Yu D-G, Zhang L-L, Liu X-K, Deng Y-C, Zhao M (2017) Electrospun hypromellose-based hydrophilic composites for rapid dissolution of poorly water-soluble drug. Carbohyd Polym 174:617–625CrossRefGoogle Scholar
  80. Wang K, Liu X-K, Chen X-H, Yu D-G, Yang Y-Y, Liu P (2018) Electrospun hydrophilic janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl Mater Interfaces 10(3):2859–2867CrossRefGoogle Scholar
  81. Weiser JR, Saltzman WM (2014) Controlled release for local delivery of drugs: barriers and models. J Controlled Release 190:664–673CrossRefGoogle Scholar
  82. Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya T (2010) Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng 98(3):370–376CrossRefGoogle Scholar
  83. Yu D-G, Li J-J, Williams GR, Zhao M (2018) Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Control Release.  https://doi.org/10.1016/j.jconrel.2018.08.016 CrossRefPubMedGoogle Scholar
  84. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95Google Scholar
  85. Zavastin D, Cretescu I, Bezdadea M, Bourceanu M, Drăgan M, Lisa G, Mangalagiu I, Vasić V, Savić J (2010) Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques. Colloids Surf A 370(1):120–128CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Manja Kurečič
    • 1
    • 2
    • 6
  • Tina Maver
    • 1
  • Natalija Virant
    • 1
  • Alenka Ojstršek
    • 1
    • 6
  • Lidija Gradišnik
    • 3
  • Silvo Hribernik
    • 1
    • 6
  • Mitja Kolar
    • 4
  • Uroš Maver
    • 3
    • 5
  • Karin Stana Kleinschek
    • 1
    • 2
    • 6
  1. 1.Laboratory for Characterization and Processing of Polymers, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  3. 3.Faculty of Medicine, Institute of Biomedical SciencesUniversity of MariborMariborSlovenia
  4. 4.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Department of Pharmacology, Faculty of MedicineUniversity of MariborMariborSlovenia
  6. 6.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia

Personalised recommendations