Advertisement

Cellulose

, Volume 25, Issue 12, pp 7127–7142 | Cite as

Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance

  • Johanna Desmaisons
  • Emil Gustafsson
  • Alain Dufresne
  • Julien Bras
Original Paper
  • 97 Downloads

Abstract

Cellulose nanofibrils (CNF), once filtered and dried, have the particularity to form a highly cohesive network, nanopaper. One of the drawbacks of all CNF nanopapers is their relative brittleness and low tear resistance, measured as the force needed for crack propagation after introducing a notch. In this work, hybrid nanopapers with drastically improved tear and crumpling resistance were produced by introducing polyethylene terephthalate (PET) microfibers into the CNF suspension prior to sheet fabrication. The PET microfibers were well dispersed in the CNF suspension and subsequently evenly distributed in the formed sheets. Incorporation of 10 wt% PET fibers increased the dry tear resistance with notch by a factor of 10 while still maintaining most of the mechanical properties. This effect is attributed to the loosely bound PET fibers which limit the crack propagation by dissipating the energy. It was also possible to improve the wet tear resistance by a factor of 4. Furthermore, incorporation of PET fibers allowed for crumpling of nanopaper that previously was so brittle it shattered from the deformation. Finally, incorporation of PET fibers also improved the crumpling resistance of wet samples. The improved wet properties, together with a higher and tunable porosity, open up the possibility to use these hybrid nanopaper sheets in filtration applications.

Graphical abstract

Keywords

Cellulose nanofibrils Nanopaper Tear resistance Crumpling resistance 

Notes

Acknowledgments

The authors thank the industrial support of this PhD project, whose name is not mentioned for confidentiality reasons. This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01). Julien Bras is a member of the Institut Universitaire de France whose support is acknowledged.

References

  1. Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioResources 12(2):4093–4110.  https://doi.org/10.15376/biores.12.2.4093-4110 CrossRefGoogle Scholar
  2. Bardet R, Reverdy C, Belgacem N et al (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241.  https://doi.org/10.1007/s10570-015-0547-9 CrossRefGoogle Scholar
  3. Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024.  https://doi.org/10.1039/C7TA02006F CrossRefGoogle Scholar
  4. Benítez AJ, Torres-Rendon J, Poutanen M, Walther A (2013) Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14:4497–4506.  https://doi.org/10.1021/bm401451m CrossRefPubMedGoogle Scholar
  5. Brandon CE (1981) Properties of paper. In: Casey JP (ed) Pulp and paper, chemistry and chemical technology, vol 3. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1715–1972Google Scholar
  6. Brucato A (1986) Method of making paper having improved tearing strength. Brooks Rand Ltd, US4609432AGoogle Scholar
  7. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631.  https://doi.org/10.1021/acs.chemmater.7b00531 CrossRefGoogle Scholar
  8. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329.  https://doi.org/10.1016/j.carbpol.2017.06.032 CrossRefPubMedGoogle Scholar
  9. Djafari Petroudy SR, Rasooly Garmaroody E, Rudi H (2017) Oriented cellulose nanopaper (OCNP) based on bagasse cellulose nanofibrils. Carbohydr Polym 157:1883–1891.  https://doi.org/10.1016/j.carbpol.2016.11.074 CrossRefPubMedGoogle Scholar
  10. Dotti F, Varesano A, Montarsolo A et al (2007) Electrospun porous mats for high efficiency filtration. J Ind Text 37:151–162.  https://doi.org/10.1177/1528083707078133 CrossRefGoogle Scholar
  11. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, BerlinCrossRefGoogle Scholar
  12. Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165.  https://doi.org/10.1021/bm801065u CrossRefPubMedGoogle Scholar
  13. González I, Boufi S, Pèlach MA et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180.  https://doi.org/10.15376/biores.7.4.5167-5180 CrossRefGoogle Scholar
  14. González I, Alcalà M, Chinga-Carrasco G et al (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609.  https://doi.org/10.1007/s10570-014-0341-0 CrossRefGoogle Scholar
  15. Gotoh K, Kikuchi S (2005) Improvement of wettability and detergency of polymeric materials by excimer UV treatment. Colloid Polym Sci 283:1356–1360.  https://doi.org/10.1007/s00396-005-1308-3 CrossRefGoogle Scholar
  16. Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43:76–82Google Scholar
  17. Hassan ML, Mathew AP, Hassan EA et al (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205.  https://doi.org/10.1007/s00226-010-0373-z CrossRefGoogle Scholar
  18. Hassan ML, Bras J, Mauret E et al (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crops Prod 64:9–15.  https://doi.org/10.1016/j.indcrop.2014.11.004 CrossRefGoogle Scholar
  19. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441.  https://doi.org/10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  20. Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585.  https://doi.org/10.1021/bm800038n CrossRefPubMedGoogle Scholar
  21. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154.  https://doi.org/10.1039/C6NR03054H CrossRefPubMedGoogle Scholar
  22. Karim Z, Claudpierre S, Grahn M et al (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428.  https://doi.org/10.1016/j.memsci.2016.05.018 CrossRefGoogle Scholar
  23. Kim J-H, Shim BS, Kim HS et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol 2:197–213.  https://doi.org/10.1007/s40684-015-0024-9 CrossRefGoogle Scholar
  24. Koga H, Saito T, Kitaoka T et al (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165.  https://doi.org/10.1021/bm400075f CrossRefPubMedGoogle Scholar
  25. Krasnoshlyk V (2017) Etude multi-échelles et multiphysiques des mécanismes de fissuration dans les matériaux à base de fibres naturelles. Grenoble Alpes, GrenobleGoogle Scholar
  26. Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117.  https://doi.org/10.1039/C7TA02807E CrossRefGoogle Scholar
  27. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764.  https://doi.org/10.1016/j.carbpol.2012.05.026 CrossRefPubMedGoogle Scholar
  28. Liimatainen H, Ezekiel N, Sliz R et al (2013) High-strength nanocellulose-talc hybrid barrier films. ACS Appl Mater Interfaces 5:13412–13418.  https://doi.org/10.1021/am4043273 CrossRefPubMedGoogle Scholar
  29. Liu A, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641.  https://doi.org/10.1021/bm101296z CrossRefPubMedGoogle Scholar
  30. Malho J-M, Laaksonen P, Walther A et al (2012) Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrix. Biomacromolecules 13:1093–1099.  https://doi.org/10.1021/bm2018189 CrossRefPubMedGoogle Scholar
  31. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806.  https://doi.org/10.1002/polb.23490 CrossRefGoogle Scholar
  32. Masaya Nogi, Shinichiro Iwamoto, Norio Nakagaito Antonio, Hiroyuki Yano (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598.  https://doi.org/10.1002/adma.200803174 CrossRefGoogle Scholar
  33. Mautner A, Lee K-Y, Tammelin T et al (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214.  https://doi.org/10.1016/j.reactfunctpolym.2014.09.014 CrossRefGoogle Scholar
  34. McAdam R, McClelland J (2002) Sources of new product ideas and creativity practices in the UK textile industry. Technovation 22:113–121.  https://doi.org/10.1016/S0166-4972(01)00002-5 CrossRefGoogle Scholar
  35. Nechyporchuk O, Belgacem MN, Bras J (2016a) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25.  https://doi.org/10.1016/j.indcrop.2016.02.016 CrossRefGoogle Scholar
  36. Nechyporchuk O, Belgacem MN, Pignon F (2016b) Current progress in rheology of cellulose nanofibril suspensions. Biomacromolecules 17:2311–2320.  https://doi.org/10.1021/acs.biomac.6b00668 CrossRefPubMedGoogle Scholar
  37. Odabas N, Amer H, Bacher M et al (2016) Properties of cellulosic material after cationization in different solvents. ACS Sustain Chem Eng 4:2295–2301.  https://doi.org/10.1021/acssuschemeng.5b01752 CrossRefGoogle Scholar
  38. Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941.  https://doi.org/10.1021/bm061215p CrossRefPubMedGoogle Scholar
  39. Petroudy SRD, Sheikhi P, Ghobadifar P (2017) Sugarcane bagasse paper reinforced by cellulose nanofiber (CNF) and bleached softwood kraft (BSWK) pulp. J Polym Environ 25:203–213.  https://doi.org/10.1007/s10924-016-0800-9 CrossRefGoogle Scholar
  40. Robles E, Kánnár A, Labidi J, Csóka L (2018) Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly(lactic acid) microfibrils. Cellulose 25:3393–3405.  https://doi.org/10.1007/s10570-018-1822-3 CrossRefGoogle Scholar
  41. RTP Imagineering Plastics (r) RTP 1105 BLK polyethylene terephthalate (PET) product data sheet—RTP Company. http://web.rtpcompany.com/info/data/1100/RTP1105BLK.htm. Accessed 22 May 2018
  42. Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691.  https://doi.org/10.1021/bm060154s CrossRefPubMedGoogle Scholar
  43. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198.  https://doi.org/10.1021/bm100490s CrossRefPubMedGoogle Scholar
  44. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644.  https://doi.org/10.1021/bm2008907 CrossRefPubMedGoogle Scholar
  45. Sheng J, Tong S, He Z, Yang R (2017) Recent developments of cellulose materials for lithium-ion battery separators. Cellulose 24:4103–4122.  https://doi.org/10.1007/s10570-017-1421-8 CrossRefGoogle Scholar
  46. Sim K, Youn HJ (2016) Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose 23:1383–1392.  https://doi.org/10.1007/s10570-016-0865-6 CrossRefGoogle Scholar
  47. Sultan E, Boudaoud A (2006) Statistics of crumpled paper. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.96.136103 CrossRefPubMedGoogle Scholar
  48. Tallinen T, Aström JA, Timonen J (2009) The effect of plasticity in crumpling of thin sheets. Nat Mater 8:25–29.  https://doi.org/10.1038/nmat2343 CrossRefPubMedGoogle Scholar
  49. Trovatti E, Tang H, Hajian A et al (2018) Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr Polym 181:256–263.  https://doi.org/10.1016/j.carbpol.2017.10.073 CrossRefPubMedGoogle Scholar
  50. Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials.  https://doi.org/10.3390/nano7030057 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wang Q, Du H, Zhang F et al (2018) Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J Mater Chem A.  https://doi.org/10.1039/C8TA01986J CrossRefGoogle Scholar
  52. Wei Q, Liu Y, Hou D, Huang F (2007) Dynamic wetting behavior of plasma treated PET fibers. J Mater Process Technol 194:89–92.  https://doi.org/10.1016/j.jmatprotec.2007.04.001 CrossRefGoogle Scholar
  53. Wu C-N, Saito T, Fujisawa S et al (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932.  https://doi.org/10.1021/bm300465d CrossRefPubMedGoogle Scholar
  54. Wu C-N, Yang Q, Takeuchi M et al (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399.  https://doi.org/10.1039/C3NR04102F CrossRefPubMedGoogle Scholar
  55. Yong C, Mei C, Guan M et al (2018) A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties. Compos Interfaces 25:301–315.  https://doi.org/10.1080/09276440.2018.1400271 CrossRefGoogle Scholar
  56. Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4:59792–59802.  https://doi.org/10.1039/C4RA12691B CrossRefGoogle Scholar
  57. Zhou L, Yang Z, Luo W et al (2016) Thermally conductive, electrical insulating, optically transparent bi-layer nanopaper. ACS Appl Mater Interfaces 8:28838–28843.  https://doi.org/10.1021/acsami.6b09471 CrossRefPubMedGoogle Scholar
  58. Zhu H, Fang Z, Preston C et al (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287.  https://doi.org/10.1039/C3EE43024C CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Johanna Desmaisons
    • 1
  • Emil Gustafsson
    • 1
  • Alain Dufresne
    • 1
  • Julien Bras
    • 1
  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2GrenobleFrance

Personalised recommendations