, Volume 25, Issue 10, pp 5909–5918 | Cite as

Morphology control for tunable optical properties of cellulose nanofibrils films

  • Weisheng Yang
  • Liang Jiao
  • Wei Liu
  • Yulin Deng
  • Hongqi Dai
Original Paper


Flexible cellulose nanofibrils film substrates with high smooth surface and high transparency are attractive for next- generation flexible transparent electrical device applications. In recent years, tuning optical properties of the substrates has become more and more important for the fabrication of the transparent electronic devices. In this study, a simple depositing process with micro-scale TEMPO-oxidized wood fibers was utilized to tune top surface morphology of the cellulose nanofibrils films. The influence of the surface morphology on the optical properties was also investigated. As the upper surface roughness increased, the optical haze of the transparent films increased. The obtained films, with total transmittance ranged from 83% to 88%, exhibited relatively low haze of 3.8% to high haze of 62.3%. In addition, the lower surface of cellulose nanofibrils films has a super flat surface, which is required for applications in electronics and optoelectronics.


Optical properties TEMPO-oxidized fibers Depositing Surface morphology 



Weisheng Yang is grateful for support received from the Introduction of Advanced International Project of Forestry Science and Technology (Grant Number: 2015454), the National Natural Science Foundation of China (Grant Number: 31470599), the Doctorate Fellowship Foundation of Nanjing Forestry University. and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  2. Bai S, Sun C, Wan P, Wang C, Luo R, Li Y, Liu J, Sun X (2015) Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors. Small 11:306–310CrossRefPubMedGoogle Scholar
  3. Chung HH, Lu S (2003) Contrast-ratio analysis of sunlight-readable color LCDs for outdoor applications. J Soc Inf Display 11:237–242CrossRefGoogle Scholar
  4. Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197CrossRefGoogle Scholar
  5. Fitz-Gerald J, Piqué A, Chrisey D, Rack P, Zeleznik M, Auyeung R, Lakeou S (2000) Laser direct writing of phosphor screens for high-definition displays. Appl Phys Lett 76:1386–1388CrossRefGoogle Scholar
  6. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  7. Geometries B, Abrasion S (2012) Standard test method for haze and luminous transmittance of transparent plastics. ASTM Int 1:1–7Google Scholar
  8. Guo F, Azimi H, Hou Y, Przybilla T, Hu M, Bronnbauer C, Langner S, Spiecker E, Forberich K, Brabec CJ (2015) High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7:1642–1649CrossRefPubMedGoogle Scholar
  9. Hassinen T, Eiroma K, Mäkelä T, Ermolov V (2015) Printed pressure sensor matrix with organic field-effect transistors. Sensor Actuat A Phys 236:343–348CrossRefGoogle Scholar
  10. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154CrossRefPubMedGoogle Scholar
  11. Hsieh M-C, Koga H, Suganuma K, Nogi M (2017) Hazy transparent cellulose nanopaper. Sci Rep-UK 7:41590CrossRefGoogle Scholar
  12. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRefGoogle Scholar
  13. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMedGoogle Scholar
  14. Hui Z, Liu Y, Guo W, Li L, Mu N, Jin C, Zhu Y, Peng P (2017) Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature. Nanotechnology 28:285703CrossRefPubMedGoogle Scholar
  15. Kang H, Jung S, Jeong S, Kim G, Lee K (2015) Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun 6:6503CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim D-H, Kim Y-S, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA (2009) Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett 95:133701CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K (2015) Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater 27:2317–2323CrossRefPubMedGoogle Scholar
  18. Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Mater 6:e93CrossRefGoogle Scholar
  19. Leppaniemi J, Eiroma K, Majumdar H, Alastalo A (2017) Far-UV annealed inkjet-printed In2O3 semiconductor layers for thin-film transistors on a flexible polyethylene naphthalate substrate. ACS Appl Mater Inter 9:8774–8782CrossRefGoogle Scholar
  20. Madaria AR, Kumar A, Zhou C (2011) Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22:245201CrossRefPubMedGoogle Scholar
  21. Mecking S (2004) Nature or petrochemistry—biologically degradable materials. Angew Chem Int Edit 43:1078–1085CrossRefGoogle Scholar
  22. Miettunen K, Halme J, Vahermaa P, Saukkonen T, Toivola M, Lund P (2009) Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers. J Electrochem Soc 156:B876–B883CrossRefGoogle Scholar
  23. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  24. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2010) Optically Transparent Nanofiber Paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  25. Qing Y, Sabo R, Wu Y, Zhu J, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRefGoogle Scholar
  26. Roth B, Dos RB, Gisele A, Corazza M (2015) The critical choice of PEDOT:PSS additives for long term stability of roll-to-roll processed OPVs. Adv Energy Mater 5:1401912CrossRefGoogle Scholar
  27. Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2014) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002CrossRefPubMedGoogle Scholar
  28. Saito T, Kimura S, Nishiyama Y (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRefGoogle Scholar
  29. Su Y, Zhao Y, Zhang H, Feng X, Shi LY, Fang J (2016) Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J Mater Chem C 5:573–581CrossRefGoogle Scholar
  30. Yan Q, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102CrossRefGoogle Scholar
  31. Yang W, Jiao L, Min D, Liu Z, Dai H (2017) Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Adv 7:10463–10468CrossRefGoogle Scholar
  32. Yao W, Bae K-J, Jung MY, Cho Y-R (2017) Transparent, conductive, and superhydrophobic nanocomposite coatings on polymer substrate. J Colloid Interface Sci 506:429–436CrossRefPubMedGoogle Scholar
  33. Zhu H, Fang Z, Preston C, Li Y, Hu L (2013a) Transparent paper: Fabrications, properties, and device applications. Energy Environ Sci 7:269–287CrossRefGoogle Scholar
  34. Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013b) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792CrossRefPubMedGoogle Scholar
  35. Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ, Fang Z, Huang J, Hu L (2013c) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry ResourcesNanjing Forestry UniversityNanjingChina
  2. 2.School of Chemical and Biomolecular Engineering and Renewable Bioproducts InstituteGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations