, Volume 25, Issue 10, pp 5939–5950 | Cite as

Preparation and characterization of PES-xerogel nanocomposite ultra-filtration membrane

  • Mozhgan Shamsodin
  • Masoud NasiriEmail author
  • Mostafa Fazli
Original Paper


Organic–inorganic composite ultrafiltration membrane was prepared with Polyethersulphone and nano-xerogels. On the other hand, xerogels were also prepared by a simple method and were synthesized by a sol–gel process in which tetramethyl orthosilan and tetraethyl orthosilan were used as a precursor. Besides, high-energy planetary ball mill process was applied to make the nano-xerogels. Then, the final nano-xerogels were used to prepare ultrafiltration membrane. Modified membranes showed significant changes in physical and chemical properties. The presence of nano-xerogel in the membrane structure improved the hydrophilicity of the membrane. Pure water flux and the pore size of the membranes increased significantly. The result showed that BSA rejection of modified membranes is high. The membrane with 2 wt% of TEOS xerogel proved to have higher BSA rejection.

Graphical abstract


Ultrafiltration Xerogel Membrane Water flux Nanocomposite 

List of symbols


Membrane area (m2)


Atomic force microscopy


Bovine serum albumin


Concentration of BSA in permeate (ppm)


Concentration of BSA in the feed (ppm)


Dynamic light scattering


Di methyl formamide


Fourier transform infrared spectroscopy


Field emission electron microscopy


Water flux


Molecular weight cut off


Polyethylene glycol


Polyether sulfone


Poly sulfone


Point of zero charge


Average roughness


Root mean square of roughness


Difference between highest peak and lowest valley


Scanning Electron Microscopy


Time for collecting permeate (h)


Zeta potential



We would like to show our gratitude to Semnan University because of their support.


  1. Afonso M, Bórquez R (2002) Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination 142:29–45. CrossRefGoogle Scholar
  2. Afonso MD, Bórquez R (2012) Polyvinylchloride ultrafiltration membranes modified, pp 1–11.
  3. Ananth A, Arthanareeswaran G, Mok YS (2014) Effects of in situ and ex situ formations of silica nanoparticles on polyethersulfone membranes. Polym Bull 71:2851–2861. CrossRefGoogle Scholar
  4. Benito J, Sánchez M, Pena P, Rodríguez M (2007) Development of a new high porosity ceramic membrane for the treatment of bilge water. Desalination 214:91–101. CrossRefGoogle Scholar
  5. Bian J, Wang ZJ, Lin HL et al (2017) Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide. J Compos Part A Appl Sci Manuf. CrossRefGoogle Scholar
  6. Cab S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546. CrossRefGoogle Scholar
  7. Hassani S, Ghasemi A, Fazli M et al (2015) Cation-assisted adsorption of chlorophenols by nano-xerogels. Can J Chem Eng 93:2214–2221. CrossRefGoogle Scholar
  8. He J-P, Li H-M, Wang X-Y, Gao Y (2006) In situ preparation of poly(ethylene terephthalate)–SiO2 nanocomposites. Eur Polym J 42:1128–1134. CrossRefGoogle Scholar
  9. He T, Frank M, Mulder MHV, Wessling M (2008) Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ether ketone) (SPEEK). J Membr Sci 307:62–72. CrossRefGoogle Scholar
  10. Juangvanich N, Mauritz K (1998) Polyethersulfone-hybrid materials via in situ sol–gel reactions for tetraalkoxysilanes. J Appl Polym 1:1799–1810CrossRefGoogle Scholar
  11. Kim DS, Park HB, Rhim JW, Moo Lee Y (2004) Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J Membr Sci 240:37–48. CrossRefGoogle Scholar
  12. Kuzmenko D, Arkhangelsky E, Belfer S et al (2005) Chemical cleaning of UF membranes fouled by BSA. Desalination 179:323–333. CrossRefGoogle Scholar
  13. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95. CrossRefGoogle Scholar
  14. Low ZX, Razmjou A, Wang K et al (2014) Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J Membr Sci 460:9–17. CrossRefGoogle Scholar
  15. Marchese J, Ponce M, Ochoa NA et al (2003) Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 211:1–11. CrossRefGoogle Scholar
  16. Maximous N, Nakhla G, Wan W, Wong K (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 341:67–75. CrossRefGoogle Scholar
  17. Pinnau I, Freeman BD (1999) Formation and modification of polymeric membranes: overview. In: Membrane formation and modification. ACS symposium series, vol 744. American Chemical Society, Washington, DC, pp 1–22.
  18. Razmjou A, Mansouri J, Chen V et al (2011) Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J Membr Sci 380:98–113. CrossRefGoogle Scholar
  19. Shen JN, Ruan HM, Wu LG, Gao CJ (2011) Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment. Chem Eng J 168:1272–1278. CrossRefGoogle Scholar
  20. Shen L, Bian X, Lu X et al (2012) Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 293:21–29. CrossRefGoogle Scholar
  21. Sun M, Su Y, Mu C, Jiang Z (2010) Improved antifouling property of PES ultrafiltration membranes using additive of silica—PVP nanocomposite. Ind Eng Chem Res 49:790–796. CrossRefGoogle Scholar
  22. TCT A (1991) Membrane pore characterization—comparison between single and multicomponent solute probe techniques. J Membr Sci 57:271–287. CrossRefGoogle Scholar
  23. Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol–gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143. CrossRefGoogle Scholar
  24. Wang Y-Q, Su Y-L, Sun Q et al (2006) Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. J Membr Sci 286:228–236. CrossRefGoogle Scholar
  25. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J Membr Sci 337:257–265. CrossRefGoogle Scholar
  26. Yu H, Zhang X, Zhang Y et al (2013) Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326:69–76. CrossRefGoogle Scholar
  27. Yune PS, Kilduff JE, Belfort G (2011) Fouling-resistant properties of a surface-modified poly(ether sulfone) ultrafiltration membrane grafted with poly(ethylene glycol)-amide binary monomers. J Membr Sci 377:159–166. CrossRefGoogle Scholar
  28. Zhang Y, Jin Z, Shan X et al (2011) Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane. J Hazard Mater 186:390–395. CrossRefPubMedGoogle Scholar
  29. Zhao W, Huang J, Fang B et al (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J Memb Sci 369:258–266. CrossRefGoogle Scholar
  30. Zhong S-H, Li C-F, Xiao X-F (2002) Preparation and characterization of polyimide–silica hybrid membranes on kieselguhr–mullite supports. J Membr Sci 199:53–58. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mozhgan Shamsodin
    • 1
  • Masoud Nasiri
    • 2
    Email author
  • Mostafa Fazli
    • 1
  1. 1.Department of ChemistrySemnan UniversitySemnanIran
  2. 2.Department of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran

Personalised recommendations