Advertisement

Cellulose

, Volume 25, Issue 9, pp 4941–4954 | Cite as

Chromophores in cellulosics, XVIII. Degradation of the cellulosic key chromophore 5,8-dihydroxy-[1,4]-naphthoquinone under conditions of chlorine dioxide pulp bleaching: a combined experimental and theoretical study

  • Takashi Hosoya
  • Nele Sophie Zwirchmayr
  • Karl Michael Klinger
  • Heidemarie Reiter
  • Martin Spitzbart
  • Thomas Dietz
  • Klaus Eibinger
  • Wolfgang Kreiner
  • Arnulf Kai Mahler
  • Heribert Winter
  • Thomas Röder
  • Antje Potthast
  • Thomas Elder
  • Thomas Rosenau
Original Paper
  • 54 Downloads

Abstract

5,8-Dihydroxy-[1,4]-naphthoquinone (DHNQ) is one of the key chromophores occurring in all types of aged cellulosics. This study investigates the degradation of DHNQ by chlorine dioxide at moderately acidic (pH 3) conditions, corresponding to the conditions of industrial bleaching (“D stage”). The degradation involves three major pathways. As initial reaction, a hydrogen transfer from DHNQ to chlorine dioxide via a PCET mechanism occurs to form a radical DHNQ· and chlorous acid. DHNQ· is then attacked by water to give a pentahydroxynaphthalene radical PHN· that is stabilized by strong delocalization of the non-paired electron into its aromatic ring. PHN· immediately disproportionates to give the observable intermediate 1,2,4,5,8-pentahydroxynapththalene (I), which was comprehensively confirmed by NMR and MS (path A). In the presence of excess ClO2, I is immediately further oxidized into acetic acid, glycolic acid, oxalic acid and CO2 as the final, stable, and non-colored products (path C). In the absence of excess ClO2, elimination of water from I regenerates DHNQ (path B), so that at roughly equimolar DHNQ/ClO2 ratios ClO2 is fully consumed while a major part of DHNQ is recovered. To avoid such DHNQ “recycling” under ClO2 consumption—and to completely degrade DHNQ to colorless degradation products instead—ClO2 must be applied in at least fivefold molar excess relative to DHNQ.

Graphical Abstract

Keywords

Cellulose Pulp bleaching Chromophores Brightness Brightness reversion Yellowing 5,8-dihydroxy-[1,4]-naphthoquinone Chlorine dioxide Ab initio calculations Density functional theory (DFT) 

Notes

Acknowledgments

We performed quantum chemical calculations with the workstation in the Sakaki group, Fukui institute for fundamental chemistry at Kyoto University, Japan, and would like to thank for the access. The financial support of the Austrian Christian Doppler Research Society (CDG) through the CD-lab “Advanced cellulose chemistry and analytics” and the Austrian Research promotion Agency (FFG), project “Chromophores-II”, is gratefully acknowledged.

References

  1. Aguilar CAH, Narayanan J, Singh N, Thangarasu P (2014) Kinetics and mechanism for. the oxidation of anilines by ClO2: a combined experimental and computational study. J Phys Org Chem 27:440–449CrossRefGoogle Scholar
  2. Arnone A, Merlini L, Nasini G, Vajna de Pava O (2007) Asymmetric Diels–Alder reactions. Part 6. Regio- and stereo-selective cycloadditions of 5-(2′,3′,4′,6′-tetra-O-acetyl-β-D-glucopyranosyloxy)-1,4-naphthoquinone. Synth Commun 37:2569–2573CrossRefGoogle Scholar
  3. Betts RL, Murphy ST, Johnson CR (2004) Enzymatic desymmetrization/resolution of epoxydiols derived from 1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone and 5,8-dihydroxy-1,4- naphthoquinone. Tetrahedron Asymmetry 15:2853–2860CrossRefGoogle Scholar
  4. Cuellar MA, Salas C, Cortes MJ, Morello A, Maya JD, Preite MD (2003) Synthesis and in vitro trypanocide activity of several polycyclic drimane–quinone derivatives. Bioorg Med Chem 11:2489–2497CrossRefGoogle Scholar
  5. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao, O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., WallingfordGoogle Scholar
  6. Greco G, Panzella L, Pezzella A, Napolitano A, d’Ischia M (2010) Reaction of dihydrolipoic acid with juglone and related naphthoquinones: unmasking of a spirocyclic 1,3-dithiane intermediate en route to naphtho[1,4]dithiepines. Tetrahedron 66:3912–3916CrossRefGoogle Scholar
  7. Hosoya T, French AD, Rosenau T (2013) Chemistry of 5,8-dihydroxy-[1,4]-naphthoquinone, a key chromophore in aged cellulosics. Mini Rev Org Chem 10(3):309–315CrossRefGoogle Scholar
  8. Hull LA, Davis GT, Rosenblatt DH, Williams HKR, Weglein RC (1967) Oxidations of amines. III. Duality of mechanism in the reaction of amines with chlorine dioxide. J Am Chem Soc 89:1163–1170CrossRefGoogle Scholar
  9. Kelly TR, Fu Y, Sieglen JT Jr., De Silva H (2000) Synthesis of an orange anthrathiophene pigment isolated from a Japanese bryozoan. Org Lett 2:2351–2352CrossRefGoogle Scholar
  10. Korntner P, Hosoya T, Dietz T, Eibinger K, Reiter H, Spitzbart M, Röder T, Borgards A, Kreiner W, Mahler AK, Winter H, French AD, Henniges U, Potthast A, Rosenau T (2015) Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII. Cellulose 22(2):1053–1062CrossRefGoogle Scholar
  11. Lanari D, Marrocchi A, Minuti L, Taticchi A, Gacs-Baitz E (2002) Synthesis of some new enantiopure [2.2]paracyclophanes bearing polycyclic aromatic subunits. Tetrahedron Asymmetry 13:1331–1335CrossRefGoogle Scholar
  12. Lehtimaa T, Kuitunen S, Tarvo V, Vuorinen T (2010) Reactions of aldehydes with chlorous acid and chlorine in dioxide bleaching. Holzforschung 64:555–561CrossRefGoogle Scholar
  13. Leigh JK, Rajput J, Richardson DE (2014) Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide. Inorg Chem 53:6715–6727CrossRefGoogle Scholar
  14. Liftinger E, Zweckmair T, Schild G, Eilenberger G, Böhmdorfer S, Rosenau T, Potthast A (2015) Analysis of degradation products in rayon spinning baths. Holzforschung 69(6):695–702CrossRefGoogle Scholar
  15. Mital A, Negi VS, Ramachandran U (2008) Synthesis and biological evaluation of naphthalene-1,4-dione derivatives as potent antimycobacterial agents. Med Chem 4:492–497CrossRefGoogle Scholar
  16. Napolitano MJ, Green BJ, Nicoson JS, Margerum DW (2005) Chlorine dioxide oxidations of tyrosine, N-acetyltyrosine, and dopa. Chem Res Toxicol 18:501–508CrossRefGoogle Scholar
  17. Potthast A, Schedl A, Zweckmair T, Kikul F, Bacher M, Rosenau T (2018) Pushing the limits: quantification of chromophores in real-world paper samples by GC-ECD and EI-GC-MS. Talanta 179:693–699CrossRefGoogle Scholar
  18. Rosenau T, Potthast A, Milacher W, Hofinger A, Kosma P (2004) Isolation and identification of residual chromophores in cellulosic materials. Polymer 45(19):6437–6443CrossRefGoogle Scholar
  19. Rosenau T, Potthast A, Kosma P, Suess H-U, Nimmerfroh N (2007) First isolation and identification of residual chromophores from aged bleached pulp samples. Holzforschung 61(6):656–661CrossRefGoogle Scholar
  20. Rosenau T, Potthast A, Kosma P, Suess HU, Nimmerfroh N (2008) Chromophores in aged hardwood pulp—their structure and degradation potential. TAPPI J 1:24–30Google Scholar
  21. Schedl A, Korntner P, Zweckmair T, Rosenau T, Potthast A (2016) Detection of cellulose-derived chromophores by ambient ionization-MS. Anal Chem 88:1253–1258CrossRefGoogle Scholar
  22. Schedl A, Zweckmair T, Kikul F, Henniges U, Rosenau T, Potthast A (2017) Aging of paper—ultra-fast quantification of 2,5-dihydroxyacetophenone, as a key chromophore in cellulosics, by reactive paper spray-mass spectrometry. Talanta 167:672–680CrossRefGoogle Scholar
  23. Tandon VK, Maurya HK (2009) Naphtho [2, 3-b][1, 4]-thiazine-5, 10-diones and 3-substituted-1, 4-dioxo-1, 4-dihydronaphthalen-2-yl-thioalkanoate derivatives: synthesis and biological evaluation. Tetrahedron Lett 50:5896–5902CrossRefGoogle Scholar
  24. Tandon VK, Singh RV, Yadav DB (2004) Synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antiviral, antifungal and anticancer agents. Bioorg MedChem Lett 14:2901–2904CrossRefGoogle Scholar
  25. Tandon VK, Yadav DB, Chaturvedi AK, Shukla PK (2005a) Synthesis of (1,4)-naphthoquinono-[3,2-c]-1H-pyrazoles and their (1,4)-naphthohydroquinone derivatives as antifungal, antibacterial, and anticancer agents. Bioorg Med Chem Lett 15:3288–3291CrossRefGoogle Scholar
  26. Tandon VK, Yadav DB, Singh RV, Chaturvedi AK, Shukla PK (2005b) Synthesis and biological evaluation of novel (L)-alpha-amino acid methyl ester, heteroalkyl, and aryl substituted 1,4-naphthoquinone derivatives as antifungal and antibacterial agents. Bioorg Med Chem Lett 15:5324–5328CrossRefGoogle Scholar
  27. Tandon VK, Maurya HK, Verma MK, Kumar R, Shukla PK (2010) ‘On water’ assisted synthesis and biological evaluation of nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur J Med Chem 45:2418–2426CrossRefGoogle Scholar
  28. Tishchenko O, Truhlar DG, Ceulemans A, Nguyen MT (2008) A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. J Am Chem Soc 130:7000–7010CrossRefGoogle Scholar
  29. Valderrama JA, Benites J, Cortes M, Pessoa-Mahana H, Prina E, Fournet A (2003) Studies on quinones: part 38. Synthesis and leishmanicidal activity of sesquiterpene 1,4-quinones. Bioorg Med Chem 11:4713–4718CrossRefGoogle Scholar
  30. Wenger J, Schedl A, Zweckmair T, Schuhmacher R, Rechthaler J, Herbinger B, Rosenau T, Potthast A (2015) Challenges to detect key-chromophores by paperspray mass spectrometry on cellulosic material. In: Conference proceedings, 18th ISWFPC international symposium on wood, fibre and pulping chemistry, Vienna, Austria, September 09–11, 2015, Vol. II, P121; ISBN: 978-3-900932-24-4Google Scholar
  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRefGoogle Scholar
  32. Zhou J, Duan L, Chen H, Ren X, Zhang Z, Zhou F, Liu J, Pei D, Ding K (2009) Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents. Bioorg Med Chem Lett 19:5091–5094CrossRefGoogle Scholar
  33. Zwirchmayr NS, Hosoya T, Henniges U, Gille L, Bacher M, Furtmüller P, Rosenau T (2017) Degradation of the cellulosic key chromophore 5,8-dihydroxy-[1,4]-naphthoquinone by hydrogen peroxide under alkaline conditions. J Org Chem 82(21):11558–11565CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Takashi Hosoya
    • 1
  • Nele Sophie Zwirchmayr
    • 2
  • Karl Michael Klinger
    • 2
  • Heidemarie Reiter
    • 3
  • Martin Spitzbart
    • 3
  • Thomas Dietz
    • 4
  • Klaus Eibinger
    • 5
  • Wolfgang Kreiner
    • 6
  • Arnulf Kai Mahler
    • 6
  • Heribert Winter
    • 6
  • Thomas Röder
    • 7
  • Antje Potthast
    • 2
  • Thomas Elder
    • 8
  • Thomas Rosenau
    • 2
    • 9
  1. 1.Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
  2. 2.Division of Chemistry of Renewable Resources, Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Mondi Uncoated Fine & Kraft Paper GmbHViennaAustria
  4. 4.Evonik-DegussaHanau-WolfgangGermany
  5. 5.Zellstoff Pöls AGPölsAustria
  6. 6.SAPPI Papier Holding GmbHGratkornAustria
  7. 7.Lenzing AGLenzingAustria
  8. 8.USDA Forest Service, Southern Research StationAuburnUSA
  9. 9.Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityÅbo/TurkuFinland

Personalised recommendations