Advertisement

Cellulose

, Volume 25, Issue 8, pp 4453–4462 | Cite as

Effect of acetyl substitution on the optical anisotropy of cellulose acetate films

  • Kazuya Hatamoto
  • Hikaru Shimada
  • Misaki Kondo
  • Shogo Nobukawa
  • Masayuki Yamaguchi
Original Paper
  • 258 Downloads

Abstract

The effect of acetyl substitution on the optical properties of cellulose acetate (CA) was investigated in the present study, because a strong demand for advanced retardation films increases greatly these days. The hot-stretched films with high acetyl substitution had negative orientation birefringence, whereas those with low acetyl substitution had positive orientation birefringence with extraordinary wavelength dispersion. It should be noted that orientation birefringence hardly relaxed even after cessation of hot-stretching. The slow relaxation of crystal orientation was responsible for the anomalous optical anisotropy, as confirmed by two-dimensional X-ray diffraction. Moreover, the slow relaxation of orientation birefringence would greatly benefit the preparation of CA optical retardation films by hot-stretching, because it would simplify the precise control of retardation. The stress-optical coefficient in the glassy state was also evaluated, and was found to decrease with the degree of acetyl substitution. This is an attractive property for optical film applications.

Graphical Abstract

Keywords

Cellulose acetate Birefringence Orientation Refractive index 

Notes

Acknowledgment

A part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B) Grant Number 16H04201. The authors would like to express their sincere gratitude to Daicel Corporation for their valuable suggestions and the kind supply of the samples employed in this study.

References

  1. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D, Vuluga DM, Butnaru M, Ivanov D, Voicu SI, Thakur VK (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  2. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  3. El-Diasty F, Soliman MA, Elgendy AFT, Ashour A (2007) Birefringence dispersion in uniaxial material irradiated by gamma rays: cellulose triacetate films. J Opt A Pure Appl Opt 9(3):247–252CrossRefGoogle Scholar
  4. Glasser WG (2004) Prospects for future applications of cellulose acetate. Macromol Symp 208(1):371–394CrossRefGoogle Scholar
  5. Kamide K (2005) Cellulose and cellulose derivatives. Elsevier Science, AmsterdamGoogle Scholar
  6. Kuhn W, Grün F (1942) Beziehungen zwishen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Z 101(3):248–271CrossRefGoogle Scholar
  7. MacLeod SK (1991) Moisture determination using Karl Fischer titrations. Anal Chem 63:557A–566AGoogle Scholar
  8. Mohd Edeerozey AM, Tsuji M, Nobukawa S, Yamaguchi M (2011a) Effect of moisture on the orientation birefringence of cellulose esters. Polymers 3(2):955–966CrossRefGoogle Scholar
  9. Mohd Edeerozey AM, Tsuji M, Shiroyama Y, Yamaguchi M (2011b) Wavelength dispersion of orientation birefringence for cellulose esters containing tricresyl phosphate. Macromolecules 44(10):3942–3949CrossRefGoogle Scholar
  10. Necula AM, Olaru N, Olaru L, Homocianu M, Ioan S (2010) Influence of the substitution degrees on the optical properties of cellulose acetates. J Appl Polym Sci 115:1751–1757CrossRefGoogle Scholar
  11. Nobukawa S, Shimada H, Aoki Y, Miyagawa A, Vu Ahn D, Yoshimura H, Tachikawa Y, Yamaguchi M (2014) Extraordinary wavelength dispersion of birefringence in cellulose triacetate film with anisotropic nanopores. Polymer 55:3247–3253CrossRefGoogle Scholar
  12. Nobukawa S, Enomoto-Rogers Y, Shimada H, Iwata T, Yamaguchi M (2015) Effect of acetylation site on orientation birefringence of cellulose triacetate. Cellulose 22(5):3003–3012CrossRefGoogle Scholar
  13. Ohkita H, Ishibashi K, Tsurumoto D, Tagaya A, Koike Y (2005) Compensation of the photoelastic birefringence of a polymer by doping with an anisotropic molecule. Appl Phys A Mater Sci Process 81:617–620CrossRefGoogle Scholar
  14. Ohno T, Nishino Y (2007) Molecular orientation and optical anisotropy in drawn films of miscible blends composed of cellulose acetate and poly(N-vinylpyrrolidone-co-methyl methacrylate). Macromolecules 40(9):3468–3476CrossRefGoogle Scholar
  15. Read BE (1975) Structure and properties of oriented polymers. In: Ward IM (ed) Applied Science Publishers, London, Chap. 4Google Scholar
  16. Roche E, Chanzy H, Boudeulle M, Marchessault RH, Sundararajanid E (1978) Three-dimensional crystalline structure of cellulose triacetate II. Macromolecules 11(1):86–94CrossRefGoogle Scholar
  17. Ryu DS, Inoue T, Osaki K (1996) A simple evaluation method of stress-optical coefficient of polymers. Nihon Reoroji Gakkaishi 24(3):129–132CrossRefGoogle Scholar
  18. Sata H, Murayama M, Shimamoto S (2004) Properties and applications of cellulose triacetate film. Macromol Symp 208(1):323–333CrossRefGoogle Scholar
  19. Shimada H, Nobukawa S, Yamaguchi M (2015) Development of microporous structure and its application to optical film for cellulose triacetate containing diisodecyl adipate. Carbohyd Polym 120:22–28CrossRefGoogle Scholar
  20. Shimada H, Kiyama A, Phulkerd P, Yamaguchi M (2017) Anomalous optical anisotropy of oriented cellulose triacetate film. Nihon Reoroji Gakkaishi 45(1):29–34Google Scholar
  21. Sikorski P, Wada M, Heux L, Shintani H, Stokke BT (2004) Crystal structure of cellulose triacetate I. Macromolecules 37(12):4547–4553CrossRefGoogle Scholar
  22. Soeta H, Fujisawa S, Saito T, Berglund L, Isogai A (2015) Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate. ACS Appl Mater Interfaces 7(20):11041–11046CrossRefPubMedGoogle Scholar
  23. Songsurang K, Mohd Edeerozey AM, Miyagawa A, Phulkerd P, Nobukawa S, Yamaguchi M (2013) Optical anisotropy in solution-cast film of cellulose triacetate. Cellulose 20(1):83–89CrossRefGoogle Scholar
  24. Szczurowski MK, Martynkien T, Statkiewicz-Barabach G, Khan L, Webb DJ (2010) Measurements of stress-optic coefficient in polymer optical fibers. Opt Lett 35(12):2013–2015CrossRefPubMedGoogle Scholar
  25. Voicu SI, Thakur VK (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohyd Polym 146:148–165CrossRefGoogle Scholar
  26. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Miculescu M, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  27. Yamaguchi M, Mohd Edeerozey AM (2013) Optical properties of cellulose-esters and application to optical functional films. In: Pope V (ed) Pulp production and processing: from papermaking to high-tech products. Smithers Rapra, Akron, pp 391–411Google Scholar
  28. Yamaguchi M, Okada K, Mohd Edeerozey AM, Shiroyama Y, Iwasaki T, Okamoto K (2009) Extraordinary wavelength dispersion of orientation birefringence for cellulose esters. Macromolecules 42(22):9034–9040CrossRefGoogle Scholar
  29. Yamaguchi M, Mohd Edeerozey AM, Songsurang K, Nobukawa S (2012) Material design of retardation films with extraordinary wavelength dispersion of orientation birefringence: a review. Cellulose 19:601–613CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kazuya Hatamoto
    • 1
  • Hikaru Shimada
    • 1
  • Misaki Kondo
    • 1
  • Shogo Nobukawa
    • 1
    • 2
  • Masayuki Yamaguchi
    • 1
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.Department of Life Science and Applied ChemistryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations