, Volume 25, Issue 6, pp 3205–3210 | Cite as

Cellulose gelation in NaOH solutions is due to cellulose crystallization

  • Ana Pereira
  • Hugo Duarte
  • Pegah Nosrati
  • Marta Gubitosi
  • Luigi Gentile
  • Anabela Romano
  • Bruno MedronhoEmail author
  • Ulf Olsson


Cellulose gelation in 2 M NaOH aqueous solution was followed by time resolved turbidity and rheology measurements. The kinetics of gelation is observed to change from several hours down to few seconds when the temperature is increased from 25 to 30 °C. The increase of turbidity upon gelation demonstrates the formation of larger cellulose aggregates, while wide angle X-ray scattering data confirms the gradual formation of crystalline domains. This suggests that the gelation can be understood as cellulose precipitation/crystallization where an effectively cross linked network and gelation results from that cellulose chains may participate in more than one crystallite.

Graphical Abstract

The gelation of cellulose solutions is due to crystallization and precipitation of cellulose.


Cellulose Gelation NaOH Crystallites, WAXS 



This work was supported by Nils and Dorthi Troëdssons Foundation, The Swedish Research Council, the Swedish Research Council Formas, and the Portuguese Foundation for Science and Technology (FCT) through project PTDC/AGR-TEC/4814/2014 and researcher grant IF/01005/2014. Ana Pereira acknowledges the support from the ERASMUS + mobility program. UO thanks Masayuki Imai for stimulating discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23(1):247–258CrossRefGoogle Scholar
  2. Budtova T, Navard P (2016) Cellulose in NaOH-water based solvents: a review. Cellulose 23(1):5–55CrossRefGoogle Scholar
  3. Glasser WG, Atalla RH, Blackwell J, Brown RM, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598CrossRefGoogle Scholar
  4. Gubitosi M, Duarte H, Gentile L, Olsson U, Medronho B (2016) On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide. Biomacromol 17(9):2873–2881CrossRefGoogle Scholar
  5. Gubitosi M, Nosrati P, Hamid MK, Kuczera S, Behrens MA, Johansson EG, Olsson U (2017) Stable, metastable and unstable cellulose solutions. R Soc Open Sci 4(8):170487–170497CrossRefPubMedPubMedCentralGoogle Scholar
  6. Hagman J, Gentile L, Jessen CM, Behrens M, Bergqvist KE, Olsson U (2017) On the dissolution state of cellulose in cold alkali solutions. Cellulose 24(5):2003–2015CrossRefGoogle Scholar
  7. Hyon SH, Cha WI, Ikada Y (1989) Preparation of Transparent Polyvinyl-Alcohol) Hydrogel. Polym Bull 22(2):119–122CrossRefGoogle Scholar
  8. Idstrom A, Gentile L, Gubitosi M, Olsson C, Stenqvist B, Lund M, Bergquist KE, Olsson U, Kohnke T, Bialik E (2017) On the dissolution of cellulose in tetrabutylammonium acetate/dimethyl sulfoxide: a frustrated solvent. Cellulose 24(9):3645–3657CrossRefGoogle Scholar
  9. Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89(4):1298–1300CrossRefPubMedGoogle Scholar
  10. Kanaya T, Ohkura M, Kaji K, Furusaka M, Misawa M (1994) Structure of poly(vinyl alcohol) gels studied by wide-angle and small-angle neutron-scattering. Macromolecules 27(20):5609–5615CrossRefGoogle Scholar
  11. Kanaya T, Takahashi N, Nishida K, Kaji K, Seto H, Nagao M, Kawabata Y, Takeda T (2002) Neutron spin echo studies on poly (vinyl alcohol) gel in a mixture of dimethyl sulfoxide and water. J Neutron Res 10:149–153CrossRefGoogle Scholar
  12. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  13. Kobayashi K, Kimura S, Togawa E, Wada M (2011) Crystal transition from Na-cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydr Polym 83(2):483–488CrossRefGoogle Scholar
  14. Liebert T (2009) Cellulose Solvents: For Analysis, Shaping and Chemical Modification. In Cellulose solvents: for analysis, shaping and chemical modification (Vol 1033, pp 3–54)Google Scholar
  15. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81CrossRefGoogle Scholar
  16. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: From solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32–40CrossRefGoogle Scholar
  17. Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Coll Interface Sci 222:502–508CrossRefGoogle Scholar
  18. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587CrossRefGoogle Scholar
  19. Muthukumar M (2007) Shifting paradigms in polymer crystallization. in progress in understanding polymer crystallization. In: Reiter G, Strobl GR (eds) Lecture notes in physics; Springer Berlin Heidelberg: Berlin, Heidelberg, Vol 714, pp 1–18Google Scholar
  20. Ohkura M, Kanaya T, Kaji K (1992) Gels of poly(vinyl alcohol) from dimethyl-sulfoxide water solutions. Polymer 33(17):3686–3690CrossRefGoogle Scholar
  21. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromol 4(2):259–264CrossRefGoogle Scholar
  22. Singh P, Duarte H, Alves L, Antunes F, Le Moigne N, Dormanns J, Duchemin B, Staiger MP, Medronho M (2015) From cellulose dissolution and regeneration to added value applications—synergism between molecular understanding and material development, cellulose—fundamental aspects and current trends. Dr. Matheus Poletto (ed) InTech,
  23. Weng LH, Zhang LN, Ruan D, Shi LH, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20(6):2086–2093CrossRefPubMedGoogle Scholar
  24. Yamane C, Mori M, Saito M, Okajima K (1996) Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym J 28(12):1039–1047CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Sciences and Technology (MeditBio), Ed. 8University of AlgarveFaroPortugal
  2. 2.Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
  3. 3.Department of Chemistry “Ugo Schiff”Università di Firenze and CSGIFlorenceItaly

Personalised recommendations