Cellulose

, Volume 25, Issue 4, pp 2435–2450 | Cite as

Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced transparency and changed rheological property

  • Lanxing Du
  • Tuhua Zhong
  • Michael P. Wolcott
  • Yang Zhang
  • Chusheng Qi
  • Boshi Zhao
  • Jinwu Wang
  • Zhiming Yu
Original Paper
  • 108 Downloads

Abstract

This paper evaluates the potential of using 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanoparticles (T-CNPs) as additives to tune the rheology of water-based acrylic resin (AR) coatings for flexible packaging applications. Three T-CNPs of T-CNF, T-MCC, and T-CNC were prepared from three starting cellulosic materials: cellulose nanofibers (CNF), microcrystalline cellulose (MCC), and cellulose nanocrystals (CNC), respectively. Their sizes ranged from 20 nm to 20 μm in diameter, and 234 nm to over 500 nm in length. The oxidation imparted carboxyl groups on the surfaces of nanoparticles ranging from 1.99 to 2.79 mmol/g and increased the zeta-potentials of the nanoparticles, clearly improving the dispersibility and stability of the CNPs in AR. The AR/T-CNP dispersion showed unreduced transparency. The morphologies of the T-CNPs affected the rheological properties of the AR/T-CNP dispersions. The larger aspect ratio of T-CNF and T-MCC resulted in the high viscosity and solid-like viscoelastic behavior of the AR/nanoparticle dispersions at a concentration of 0.78 wt%. The CNC and T-CNC with a smaller particle size and aspect ratio had less effect on the viscosity and rheological behavior of the resulting dispersions compared with the others—even at a high content of 1.30 wt%. Due to a lower aspect ratio but a relatively large particle size, the AR/T-MCC dispersions exhibited elastic gel-like rheological properties at a low content.

Keywords

Cellulose nanoparticles TEMPO-oxidation Acrylic resin Aspect ratio Transparency Rheological property 

Notes

Acknowledgments

This study was supported by the Northwest Advanced Renewables Alliance project sponsored by the National Institute of Food and Agriculture (Grant No. 2011-68005-30416), the National Science Foundation Industry & University Cooperative Research Center for Bioplastics and Biocomposites, and China Scholarship Council.

References

  1. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794.  https://doi.org/10.1007/s10570-013-9871-0 CrossRefGoogle Scholar
  2. Baldacchini T, Lafratta CN, Farrer RA, Teich MC, Saleh BEA, Naughton MJ et al (2004) Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. J Appl Phys 95:6072–6076.  https://doi.org/10.1063/1.1728296 CrossRefGoogle Scholar
  3. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the tempo-mediated oxidation time. Carbohydr Polym 99:74–83.  https://doi.org/10.1016/j.carbpol.2013.08.032 CrossRefGoogle Scholar
  4. Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123.  https://doi.org/10.1021/la2035449 CrossRefGoogle Scholar
  5. Bousfield D, Richmond F, Bilodeau M (2013) The properties of paper coating layers that contain cellulose nanofibrils. In: TAPPI international conference on nanotechnology for renewable materials, Stockholm, SwedenGoogle Scholar
  6. Charani PR, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated mfc gel from kenaf unbleached pulp. Cellulose 20:727–740.  https://doi.org/10.1007/s10570-013-9862-1 CrossRefGoogle Scholar
  7. Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157.  https://doi.org/10.1007/s10570-012-9829-7 CrossRefGoogle Scholar
  8. Cho SY (2010) Flow-induced liquid crystalline solutions prepared from aspect ratio-controlled bacterial cellulose nanowhiskers. Mol Cryst Liq Cryst 519:141–148.  https://doi.org/10.1080/15421401003609897 CrossRefGoogle Scholar
  9. Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z (2017) A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. Bioresour Technol 238:254–262.  https://doi.org/10.1016/j.biortech.2017.03.097 CrossRefGoogle Scholar
  10. Duan Y, Huo Y, Duan L (2017) Preparation of acrylic resins modified with epoxy resins and their behaviors as binders of waterborne printing ink on plastic film. Colloids and surfaces a: physicochemical and engineering aspects 535:225–231CrossRefGoogle Scholar
  11. Elrebii M, Mabrouk AB, Boufi S (2014) Synthesis and properties of hybrid alkyd-acrylic dispersions and their use in VOC-free waterborne coatings. Progress Org Coat 77:757–764.  https://doi.org/10.1016/j.porgcoat.2013.12.016 CrossRefGoogle Scholar
  12. Feng J, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40.  https://doi.org/10.1016/j.carbpol.2013.02.022 CrossRefGoogle Scholar
  13. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  14. Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose 21:1313–1326.  https://doi.org/10.1007/s10570-014-0248-9 CrossRefGoogle Scholar
  15. Hay MB, Myneni SCB (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: infrared spectroscopy. Geochim Cosmochim Acta 71:3518–3532.  https://doi.org/10.1016/j.gca.2007.03.038 CrossRefGoogle Scholar
  16. Hunter RJ (1981) Zeta potential in colloids science. Academic Press, New York.  https://doi.org/10.1016/b978-0-12-361961-7.50007-9 Google Scholar
  17. Jin L, Wei Y, Xu Q, Yao W, Cheng Z (2014) Cellulose nanofibers prepared from tempo-oxidation of kraft pulp and its flocculation effect on kaolin clay. J Appl Polym Sci 131:469–474.  https://doi.org/10.1002/app.40450 Google Scholar
  18. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866.  https://doi.org/10.1007/s10570-012-9684-6 CrossRefGoogle Scholar
  19. Li MC, Wu Q, Song K, Lee S, Yan Q, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832.  https://doi.org/10.1021/acssuschemeng.5b00144 CrossRefGoogle Scholar
  20. Lin L, Shuai Z, Jin Z, Zhen XZ, Hu H, Xin Z et al (2013) Tempo-mediated oxidation of microcrystalline cellulose: influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues. Fibers Polym 14:352–357.  https://doi.org/10.1007/s12221-013-0352-8 CrossRefGoogle Scholar
  21. Moberg T, Sahlin K, Yao K, Geng S, Westman G, Zhou Q et al (2017) Rheological properties of nanocellulose suspensions: effects of fibril/particle dimensions and surface characteristics. Cellulose 24:1–12.  https://doi.org/10.1007/s10570-017-1283-0 CrossRefGoogle Scholar
  22. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by tempo-mediated oxidation. Biomacromolecules 11:1696–1700.  https://doi.org/10.1021/bm100214b CrossRefGoogle Scholar
  23. Osterberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647.  https://doi.org/10.1021/am401046x CrossRefGoogle Scholar
  24. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598.  https://doi.org/10.1021/acs.langmuir.6b03765 CrossRefGoogle Scholar
  25. Ruiz M, Cavaille J, Dufresne A, Graillat C, Geŕard J (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169:211–222.  https://doi.org/10.1002/1521-3900(200105)169:1<211::AID-MASY211>3.0.CO;2-H
  26. Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355.  https://doi.org/10.1007/s10853-011-5696-0 CrossRefGoogle Scholar
  27. Saito T, Isogai A (2004) Tempo-mediated oxidation of native cellulose: the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989.  https://doi.org/10.1021/bm0497769 CrossRefGoogle Scholar
  28. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004.  https://doi.org/10.1007/s10570-010-9430-x CrossRefGoogle Scholar
  29. Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during tempo-mediated oxidation. Cellulose 10:151–158.  https://doi.org/10.1023/a:1024051514026 CrossRefGoogle Scholar
  30. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of tempo-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849.  https://doi.org/10.1021/bm2017542 CrossRefGoogle Scholar
  31. Tan Y, Liu Y, Chen W, Liu Y, Wang Q, Li J et al (2016) Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4:3766–3772.  https://doi.org/10.1021/acssuschemeng.6b00415 CrossRefGoogle Scholar
  32. Veigel S, Grüll G, Pinkl S, Obersriebnig M, Müller U, Gindl-Altmutter W (2014) Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres. React Funct Polym 85:214–220.  https://doi.org/10.1016/j.reactfunctpolym.2014.07.020 CrossRefGoogle Scholar
  33. Wang L (2013) Dynamic and steady rheological properties of printing pastes and the influence on printing performances. Doctoral dissertation, Donghua University, ChinaGoogle Scholar
  34. Yu HY, Qin ZY, Liu L, Yang XG, Zhou Y, Yao JM (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28.  https://doi.org/10.1016/j.compscitech.2013.07.024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lanxing Du
    • 1
    • 2
  • Tuhua Zhong
    • 2
  • Michael P. Wolcott
    • 2
  • Yang Zhang
    • 1
  • Chusheng Qi
    • 1
  • Boshi Zhao
    • 1
  • Jinwu Wang
    • 3
  • Zhiming Yu
    • 1
  1. 1.College of Material Science and TechnologyBeijing Forestry UniversityBeijingChina
  2. 2.Composite Materials and Engineering CenterWashington State UniversityPullmanUSA
  3. 3.Forest Products Laboratory, US Forest ServiceMadisonUSA

Personalised recommendations