Skip to main content
Log in

Comparative study of cellulosic components isolated from different Eucalyptus species

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Seven selected Eucalyptus varieties grown under the same conditions were collected to investigate the relationships between specie type and cellulose composition as well as structural and thermo-chemical properties. This systematic investigation used E. badjensis, E. benthamii, E. dunnii, E. globulus, E. nitens, E. smithii and two hybrids, E. nitens × E. globulus, from which holocellulose and alpha-cellulose were isolated. The results indicated no significant correlation between the molecular fingerprints and higher order structural features (crystallinity via X-ray diffraction, CrI XRD). Compared to the cellulosic source, the same techniques revealed higher CrI for the isolated holocellulose. The opposite applied to the CrI of alpha-cellulose. CrI spanned the range between 39 and 55%, and crystallite sizes spanned 1.8–4.4 nm range. The cellulose from the Eucalyptus samples displayed distinctive chemical fingerprints and thermal degradation (thermogravimetric analysis, TGA), the latter of which occurred in a wide range of temperature, between 338 and 369 °C. Most remarkably, a significant correlation was observed between CrI XRD and TGA from the wood samples. Moreover, the thermal degradation of alpha-cellulose correlated strongly with the crystallite size. In wood and holocellulose samples, E. badjensis and E. smithii showed the lowest CrI and thermal degradation of cellulose, while En × Eg hybrids showed the highest values. Alpha-cellulose from E. dunni underwent the highest thermal degradation and E. smithii displayed the highest CrI. Such differences are expected to be relevant to the processing and quality of cellulose derivatives, a subject that is yet to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adel MA, Abb El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym 83:676–687

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-EAXS methods. J Agric Food Chem 61:103–113

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984

    Article  CAS  Google Scholar 

  • Aguayo MG, Ferraz A, Elissetche JP, Masarin F, Mendonça RT (2014) Lignin chemistry and topochemistry during kraft delignification of Eucalyptus globulus genotypes with contrasting pulpwood characteristics. Holzforschung 68:623–629

    Article  CAS  Google Scholar 

  • Barneto AG, Hernández RB, Berenguer JM (2011) Thermogravimetric characterization of Eucalyptus wood. O Papel 72:53–56

    CAS  Google Scholar 

  • Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809

    Article  CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant FH, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307

    Article  CAS  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Strucutral FTIR analysis and the thermal characterization of lyocell and viscose-type fibers. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche JP (2015) Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Res 60:1–10

    Google Scholar 

  • Carrillo I, Valenzuela S, Elissetche JP (2017a) Comparative evaluation of Eucalyptus globulus and E. nitens wood and fibre quality. IAWA J 38:105–116

    Article  Google Scholar 

  • Carrillo I, Vidal C, Elissetche JP, Mendonça RT (2017b) Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review. South For. https://doi.org/10.2989/20702620.2016.1274859

    Google Scholar 

  • Casas A, Alonso MV, Oliet M, Santos TM, Rodríguez F (2013) Characterization of cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilmidazolium chloride. Carbohydr Polym 92:1946–1952

    Article  CAS  Google Scholar 

  • Cetinkol OP, Smith-Moritz AM, Cheng G, Lao J, George A, Hong K, Henry R, Simmons BA, Heazlewood JL, Holmes BM (2012) Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. PLoS ONE 12:e52820

    Article  Google Scholar 

  • Cintrón MS, Hinchliffe DJ (2015) FT-IR Examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40

    Article  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45:13–21

    CAS  Google Scholar 

  • Clarke CR, Palmer B, Gouden D (2008) Understanding and adding value to Eucalyptus fibre. South For 70:169–174

    Google Scholar 

  • Collier W, Kalasinsky VF, Schultz TP (1997) Infrared study of lignin: assignment of methoxyl C–H bending amnd stretching bands. Holzforschung 51:167–168

    Article  CAS  Google Scholar 

  • Del Río JC, Gutiérrez A, Hernando M, Landín P, Romero J, Martínez AT (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J Anal Appl Pyrolysis 74:110–115

    Article  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Duchemin B, Thuault A, Vicente A, Rigaud B, Fernandez C, Eve S (2012) Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19:1837–1854

    Article  CAS  Google Scholar 

  • Dutt D, Tyagi GH (2011) Comparison of various Eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian J Chem Technol 18:145–151

    CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Pulp and paper chemistry and technology. Volume 1. Wood chemistry and wood biotechnology. GmbH & Co.KG, Berlin

    Book  Google Scholar 

  • Evans R, Newman RH, Roick UC, Suckling ID, Wallis APA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  • Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier transform–materials analysis. InTech, Rijeka

    Google Scholar 

  • Fengel D (1992) Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung 46:283–288

    Article  CAS  Google Scholar 

  • Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108

    Article  CAS  Google Scholar 

  • Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505–511

    Article  CAS  Google Scholar 

  • Fink HP, Hoffmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70

    CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gomes FJB, Colodette JL, Burnet A, Batalha LAR, Santos FA, Demuner IF (2015) Thorough characterization of brazilian new generation of Eucalypt clones and grass for pulp production. Int J For Res 2015:1–10

    Google Scholar 

  • Gumuskaya E, Usta M (2002) Crystalline structure properties of bleached and unbleached wheat straw (Triticum Aestivum L.) soda-oxygen pulp. Turk J Agric For 26:247–252

    CAS  Google Scholar 

  • Harrington KJ, Higgins HG, Michell AJ (1964) Infrared spectra of Eucalyptus regnans F. Muell and Pinus radiata D. Don. Holzforschung 18:108–113

    Article  CAS  Google Scholar 

  • Hergert HL, Kurth EF (1953) The infrared spectra of lignin and related compounds. I. Characteristic carbonyl and hydroxyl frequencies of some flavonones, flavones, chalcones and acetophenones. J Am Chem Soc 75:1622–1625

    Article  CAS  Google Scholar 

  • Higgins HG, Stewart CM, Harrington KJ (1961) Infrared spectra of cellulose and related polysaccharides. J Polym Sci 51:59–84

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Hurtubise FG, Krassing H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy—use of potassium bromide pellet technique. Anal Chem 32:177–181

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jiao C, Xiong J (2014) Accessibility and morphology of cellulose fibres treated with sodium hydroxide. BioResources 9:6504–6513

    Article  CAS  Google Scholar 

  • Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335

    Article  CAS  Google Scholar 

  • Kacurakova M, Belton PS, Wilson RH, Hirsch J, Ebringerova A (1998) Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. J Sci Food Agric 77:38–44

    Article  CAS  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018

    Article  CAS  Google Scholar 

  • Kataoka Y, Kondo T (1998) FT-IR Microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764

    Article  CAS  Google Scholar 

  • Kim HS, Kim S, Kim HJ, Yang HS (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: volume I—fundamentals and analytical methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292

    Article  CAS  Google Scholar 

  • Li Q, Renneckar C (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959a) Infrared spectra of crystalline polysaccharides, I: hydrogen bonds in native cellulose. J Polym Sci 37:385–395

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959b) Infrared spectra of crystalline polysaccharides, II: native cellulose in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959c) Hydrogen bonds in native cellulose. J Polym Sci 35:529–531

    Article  Google Scholar 

  • Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides, III: mercerized cellulose. J Polym Sci 43:71–84

    Article  CAS  Google Scholar 

  • McKenzie AW, Higgins HG (1958) The structure and properties of paper. Part II. The influence of alkali on the infra-red spectra, bonding capacity and beating response of wood and cotton fibres. Svensk Papperstidn 61:893–901

    CAS  Google Scholar 

  • McKinley R, Shelbourne CJA, Low CB, Penellum B, Kimberley M (2002) Wood properties of young Eucalyptus nitens, E. globulus and E. maidenii in Northland. N Z J For Sci 32:334–356

    Google Scholar 

  • Mendonça RT, Jara J, González V, Elissetche J, Freer J (2008) Evaluation of the white-rot fungi Ganoderma austral and Ceriposipsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323–1330

    Article  Google Scholar 

  • Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Technol 49:472–477

    Article  CAS  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52

    Article  CAS  Google Scholar 

  • Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPré EF, McCall ER (1957) Infrared spectrophotometric procedure for analysis of cellulose and modified cellulose. Anal Chem 29:998–1005

    Article  Google Scholar 

  • O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: part I—physical and crystalline modifications and oxidations. Text Res J 28:382–392

    Article  Google Scholar 

  • Odabas N, Amer H, Bacher M, Henniges U, Potthast A, Rosenau T (2016) Properties of cellulosic material after cationization in different solvents. ACS Sustain Chem Eng 4:2295–2301

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005a) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005b) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  • Ornaghi HL Jr, Poletto MP, Zattera AJ, Amico SC (2014) Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21:177–188

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Patt R, Kordsachia O, Fehr J (2006) European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Sci Technol 40:39–48

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012a) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Santana RMC (2012b) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:336–343

    Article  Google Scholar 

  • Poletto M, Ornaghi H, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Wilfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61:1168–1177

    Article  CAS  Google Scholar 

  • Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  • Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    Article  CAS  Google Scholar 

  • Ramírez M, Rodríguez J, Balocchi C, Peredo M, Elissetche JP, Mendonça R, Valenzuela S (2009) Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and handsheet properties. J Wood Chem Technol 29:43–58

    Article  Google Scholar 

  • Rojas OJ (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham

    Google Scholar 

  • Rozmarin GH, Ungureanu V, Stoleru A (1977) A study on the supramolecular structure of cellulose carried out by means of acid hydrolysis. Cellulose Chem Technol 11:523–530

    CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Sebio-Puñal T, Naya S, Lopez-Beceiro J, Tarrío-Saavedra J, Artiaga R (2012) Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim 109:1163–1167

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Su Y, Burguer C, Ma H, Chu B, Hsiao BS (2015) Exploring the nature of cellulose microfibrils. Biomacromolecules 16:1201–1209

    Article  CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Tonoli GHD, Holtman KM, Glenn G, Fonseca AS, Wood D, Williams T, Sa VA, Torres L, Klamczynski A, Orts WJ (2016) Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23:1239–1256

    Article  CAS  Google Scholar 

  • Tsuboi M (1957) Infrared spectrum and crystal structure of cellulose. J Polym Sci 25:159–171

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Xu F, Shi YC, Wang D (2013) X-ray scattering studies of lignocellulosic biomass: a review. Carbohydr Polym 94:904–917

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393

    Article  CAS  Google Scholar 

  • Yokoyama T, Kadla KF, Chang HM (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. J Agric Food Chem 50:1040–1044

    Article  CAS  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from FONDECYT (Grant 1160306), MINEDUC-Chile (Grant UCO 1410) and funding support for the exchange between Chile and Finland as well as the provision of facilities and technical support by Aalto’s OtaNano-Nanomicroscopy Center (Aalto-NMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regis Teixeira Mendonça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, I., Mendonça, R.T., Ago, M. et al. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25, 1011–1029 (2018). https://doi.org/10.1007/s10570-018-1653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1653-2

Keywords

Navigation