, Volume 25, Issue 2, pp 1249–1263 | Cite as

Controlled release of carvacrol and curcumin: bio-based food packaging by synergism action of TEMPO-oxidized cellulose nanocrystals and cyclodextrin

  • Daniele Oliveira de CastroEmail author
  • Nicolas Tabary
  • Bernard Martel
  • Alessandro Gandini
  • Naceur Belgacem
  • Julien Bras
Original Paper


Oxidized cellulose nanocrystals with sodium carboxylate groups (TOCNC-COONa) and with free carboxyl groups (TOCN-COOH) were prepared and then chemically modified with beta-cyclodextrin (βCD) and hydroxypropyl-beta-cyclodextrin (HPβCD) to prepare materials able to load and release antibacterial molecules over a prolonged period of time. The materials were characterized by infrared spectroscopy, and the CD content of modified TOCNCs determined by phenolphthalein colorimetry. The extent of grafting was also assessed by QCM-D and microscopy was used to ascertain and compare the morphology of both TOCNC-COONa/HPβCD and TOCNC-COOH/HPβCD. Then, carvacrol and curcumin were entrapped by the attached HPβCD and their prolonged release confirmed, as compared to neat material. The combined effects of HPβCD and carvacrol on the antimicrobial properties of TOCNC-COOH films were finally evaluated.


Cellulose nanocrystals Hydroxypropyl beta cyclodextrin Beta cyclodextrin Carvacrol Curcumin 



The authors gratefully acknowledge the CNPq (National Research Council, Brazil) for the postdoctoral fellowship to D.O.C. (248642/2013-8) and to Dr. Marcos Mariano for the support with AFM data. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir—Grant Agreements No. ANR-11-CARN-007-01 and ANR-11-CARN-030-01).

Supplementary material

10570_2017_1646_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)


  1. Alila S, Besbes I, Vilar MR et al (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259. CrossRefGoogle Scholar
  2. Astray G, Gonzalez-Barreiro C, Mejuto JC et al (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. CrossRefGoogle Scholar
  3. Azzam F, Heux L, Jean B, Putaux J-L (2010) Preparation by grafting onto, characterization and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659. CrossRefGoogle Scholar
  4. Bakkour Y, Vermeersch G, Morcellet M et al (2006) Formation of cyclodextrin inclusion complexes with doxycyclin-hyclate: NMR investigation of their characterisation and stability. J Incl Phenom Macrocycl Chem 54:109–114. CrossRefGoogle Scholar
  5. Barba C, Eguinoa A, Mate JI (2015) Preparation and characterization of β-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films. LWT Food Sci Technol 64:1362–1369. CrossRefGoogle Scholar
  6. Butchosa NN, Brown C, Larsson PT et al (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404. CrossRefGoogle Scholar
  7. Castro DO, Tabary N, Martel B et al (2016) Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol. Mater Sci Eng C 69:1018–1025. CrossRefGoogle Scholar
  8. Chen G, Liu B (2016) Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll 55:100–107. CrossRefGoogle Scholar
  9. da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425. CrossRefGoogle Scholar
  10. Dehabadi VA, Buschmann H-J, Gutmann JS (2014) Spectrophotometric estimation of the accessible inclusion sites of β-cyclodextrin fixed on cotton fabrics using phenolic dyestuffs. Anal Methods 6:3382. CrossRefGoogle Scholar
  11. Dong C, Ye Y, Qian L et al (2014) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21:1921–1932. CrossRefGoogle Scholar
  12. Du YZ, Xu JG, Wang L et al (2009) Preparation and characteristics of hydroxypropyl-β-cyclodextrin polymeric nanocapsules loading nimodipine. Eur Polym J 45:1397–1402. CrossRefGoogle Scholar
  13. Ehmann HMA, Mohan T, Koshanskaya M et al (2014) Design of anticoagulant surfaces based on cellulose nanocrystals. Chem Commun (Camb) 50:13070–13072. CrossRefGoogle Scholar
  14. Espino-Pérez E, Bras J, Almeida G et al (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23:2955–2970. CrossRefGoogle Scholar
  15. Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583. CrossRefGoogle Scholar
  16. Gandini A, Belgacem N (2015) The surface and in-depth modification of cellulose fibers. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, 1st edn. Springer, Berlin, pp 169–206Google Scholar
  17. Garcia A, Gandini A, Labidi J et al (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38. CrossRefGoogle Scholar
  18. Gicquel E, Martin C, Garrido Yanez J, Bras J (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061. CrossRefGoogle Scholar
  19. Gómez HC, Serpa A, Velásquez-Cock J et al (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll 57:178–186. CrossRefGoogle Scholar
  20. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. CrossRefGoogle Scholar
  21. Hegge AB, Vukicevic M, Bruzell E et al (2013) Solid dispersions for preparation of phototoxic supersaturated solutions for antimicrobial photodynamic therapy (aPDT): studies on curcumin and curcuminoides L. Eur J Pharm Biopharm 83:95–105. CrossRefGoogle Scholar
  22. Higueras L, López-carballo G, Cerisuelo JP, Gavara R (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97:262–268. CrossRefGoogle Scholar
  23. Kayaci F, Ertas Y, Uyar T (2013) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165. CrossRefGoogle Scholar
  24. Kfoury M, Landy D, Ruellan S et al (2016) Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem 12:29–42. CrossRefGoogle Scholar
  25. Kurek M, Moundanga S, Favier C et al (2013) Antimicrobial efficiency of carvacrol vapour related to mass partition coefficient when incorporated in chitosan based films aimed for active packaging. Food Control 32:168–175CrossRefGoogle Scholar
  26. La A, Ercolini D, Marinello F et al (2011) Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol 162:164–172. CrossRefGoogle Scholar
  27. Lavoine N, Givord C, Tabary N et al (2014a) Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innov Food Sci Emerg Technol 26:330–340. CrossRefGoogle Scholar
  28. Lavoine N, Tabary N, Desloges I et al (2014b) Controlled release of chlorhexidine digluconate using β-cyclodextrin and microfibrillated cellulose. Colloids Surf B Biointerfaces 121:196–205. CrossRefGoogle Scholar
  29. Li B, Konecke S, Wegiel LA et al (2013) Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym 98:1108–1116. CrossRefGoogle Scholar
  30. Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–880. CrossRefGoogle Scholar
  31. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. CrossRefGoogle Scholar
  32. Mäkelä M, Korpela T, Laakso S (1987) Colorimetric determination of β-cyclodextrin: two assay modifications based on molecular complexation of phenolphthalein. J Biochem Biophys Methods 14:85–92. CrossRefGoogle Scholar
  33. Marcolino VA, Zanin GM, Durrant LR et al (2011) Interaction of curcumin and bixin with β-cyclodextrin: complexation methods, stability, and applications in food. J Agric Food Chem 59:3348–3357. CrossRefGoogle Scholar
  34. Mohamed MH, Wilson LD, Headley JV (2010) Estimation of the surface accessible inclusion sites of β-cyclodextrin based copolymer materials. Carbohydr Polym 80:186–196. CrossRefGoogle Scholar
  35. Mulinacci N, Melani F, Vincieri FF et al (1996) 1H-NMR NOE and molecular modelling to characterize thymol and carvacrol β-cyclodextrin complexes. Int J Pharm 128:81–88. CrossRefGoogle Scholar
  36. Peretto G, Du W, Avena-bustillos RJ et al (2014) Postharvest Biology and Technology Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. 89:11–18. Google Scholar
  37. Piercey MJ, Mazzanti G, Budge SM et al (2012) Antimicrobial activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged fresh-cut onions. Food Microbiol 30:213–218. CrossRefGoogle Scholar
  38. Ponce Cevallos PA, Buera MP, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99:70–75. CrossRefGoogle Scholar
  39. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. CrossRefGoogle Scholar
  40. Sanchez-Gonzalez L, Gonzalez-Martinez C, Chiralt A, Chafer M (2010) Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. J Food Eng 98:443–452. CrossRefGoogle Scholar
  41. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362. CrossRefGoogle Scholar
  42. Sun Y, Du L, Liu Y et al (2014) Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-β-cyclodextrin for melanoma treatment. Int J Pharm 469:31–39. CrossRefGoogle Scholar
  43. Tomren MA, Másson M, Loftsson T, Tønnesen HH (2007) Studies on curcumin and curcuminoids. XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 338:27–34. CrossRefGoogle Scholar
  44. Valo H, Arola S, Laaksonen P et al (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77. CrossRefGoogle Scholar
  45. Veiga FJ, Fernandes CM, Carvalho RA, Geraldes CF (2001) Molecular modelling and 1H-NMR: ultimate tools for the investigation of tolbutamide: beta-cyclodextrin and tolbutamide: hydroxypropyl-beta-cyclodextrin complexes. Chem Pharm Bull (Tokyo) 49:1251–1256. CrossRefGoogle Scholar
  46. Wang D-C, Yu H-Y, Song M-L et al (2017) Superfast adsorption-disinfection cryogels decorated with cellulose nanocrystal/zinc oxide nanorod clusters for water-purifying microdevices. ACS Sustain Chem Eng 5:6776–6785. CrossRefGoogle Scholar
  47. Yu H, Yan C, Yao J (2014) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4:59792–59802. CrossRefGoogle Scholar
  48. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. CrossRefGoogle Scholar
  49. Zarzycki PK, Lamparczyk H (1998) The equilibrium constant of β-cyclodextrin–phenolphthalein complex; influence of temperature and tetrahydrofuran addition 1. J Pharm Biomed Anal 18:165–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.LGP2Univ. Grenoble AlpesGrenobleFrance
  2. 2.LGP2CNRSGrenobleFrance
  3. 3.Unité Matériaux et Transformations (UMET), UMR CNRS 8207Université Lille 1Villeneuve-d’AscqFrance

Personalised recommendations