Advertisement

Cellulose

, Volume 24, Issue 12, pp 5371–5387 | Cite as

Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system

  • Tao Gan
  • Yanjuan Zhang
  • Yang Su
  • Huayu Hu
  • Aimin Huang
  • Zuqiang Huang
  • Dong Chen
  • Mei Yang
  • Juan Wu
Original Paper

Abstract

The present study focused on investigating the catalytic mechanism of metal salts (sodium hypophosphite, sodium bisulfate and ammonium ferric sulfate) for esterification of bagasse cellulose carried out by mechanical activation-assisted solid phase reaction in a stirring ball mill. FTIR analysis of the products confirmed that these metal salts could catalyze the esterification of cellulose. XRD, SEM, FTIR, and 31P-NMR analyses of different samples indicated a synergistic effect between metal salt and ball milling, and the presence of metal salts enhanced the destruction on crystal structure of cellulose by mechanical force. The catalytic mechanism of three metal salts was difference: sodium bisulfate and ammonium ferric sulfate belonged to the catalytic mechanism of protonic acid and Lewis acid, respectively, while the catalytic mechanism of sodium hypophosphite was considered as that it could react with maleic acid to form active intermediates under ball milling.

Keywords

Cellulose Esterification Metal salt Catalytic mechanism Mechanical activation 

Notes

Acknowledgments

This research was supported by National Natural Science Foundation of China (Nos. 51463003 and 21666005), the Guangxi Science and Technology Plan Project of China (Grant No. AB16380305), Guangxi Distinguished Experts Special Foundation of China, and the Scientific Research Foundation of Guangxi University (Grant No. XJPZ160713).

Supplementary material

10570_2017_1524_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. Abhilash PC, Singh N (2008) Influence of the application of sugarcane bagasse on lindane (γ-HCH) mobility through soil column: implication for biotreatment. Bioresour Technol 99(18):8961–8966CrossRefGoogle Scholar
  2. Barbosa SL, Dabdoub MJ, Hurtado GR, Klein SI, Baroni ACM, Cunha C (2006) Solvent free esterification reactions using Lewis acids in solid phase catalysis. Appl Catal A-Gen 313(2):146–150CrossRefGoogle Scholar
  3. Bassan IAL, Nascimento DR, San Gil RAS, Pais Da Silva MI, Moreira CR, Gonzalez WA Jr, Faro AC, Onfroy T, Lachter ER (2013) Esterification of fatty acids with alcohols over niobium phosphate. Fuel Process Technol 106:619–624CrossRefGoogle Scholar
  4. Cao X, Sun S, Peng X, Zhong L, Sun R, Jiang D (2013) Rapid synthesis of cellulose esters by transesterification of cellulose with vinyl esters under the catalysis of NaOH or KOH in DMSO. J Agric Food Chem 61(10):2489–2495CrossRefGoogle Scholar
  5. Charmot A, Katz A (2010) Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides: cellobiose and maltose. J Catal 276(1):1–5CrossRefGoogle Scholar
  6. Chundawat SPS, Bellesia G, Uppugundla N, Da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163–11174CrossRefGoogle Scholar
  7. Condron LM, Goh KM, Newman RH (1985) Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. Eur J Soil Sci 36(2):199–207CrossRefGoogle Scholar
  8. Cr Py L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170CrossRefGoogle Scholar
  9. Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6(3):1645–1649CrossRefGoogle Scholar
  10. Da Silva ASA, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409CrossRefGoogle Scholar
  11. Dankovich TA, Hsieh Y (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480CrossRefGoogle Scholar
  12. Fischer S, Leipner H, Thummler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10(3):227–236CrossRefGoogle Scholar
  13. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRefGoogle Scholar
  14. Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromol 14(9):3246–3255CrossRefGoogle Scholar
  15. Gillingham EL, Lewis DM, Voncina B (1999) An FTIR study of anhydride formation on heating butane-tetracarboxylic acid in the presence of various catalysts. Text Res J 69(12):949–955CrossRefGoogle Scholar
  16. Granstrom M, Kavakka J, King A, Majoinen J, Makela V, Helaja J, Hietala S, Virtanen T, Maunu S, Argyropoulos DS, Kilpelainen I (2008) Tosylation and acylation of cellulose in 1-allyl-3-methylimidazolium chloride. Cellulose 15(3):481–488CrossRefGoogle Scholar
  17. Granstrom M, Paakko MKN, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2(8):1789–1796CrossRefGoogle Scholar
  18. Hu H, Li H, Zhang Y, Chen Y, Huang Z, Huang A, Zhu Y, Qin X, Lin B (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5(27):20656–20662CrossRefGoogle Scholar
  19. Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D (2011) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem 59(10):5376–5381CrossRefGoogle Scholar
  20. Huang Z, Tan Y, Zhang Y, Liu X, Hu H, Qin Y, Huang H (2012a) Direct production of cellulose laurate by mechanical activation-strengthened solid phase synthesis. Bioresour Technol 118:624–627CrossRefGoogle Scholar
  21. Huang Z, Wang N, Zhang Y, Hu H, Luo Y (2012b) Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos part A-Appl S 43(1):114–120CrossRefGoogle Scholar
  22. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KD, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447CrossRefGoogle Scholar
  23. Jr. Karnitz O, Alves Gurgel LV, Perin De Melo JC, Botaro VR, Sacramento Melo TM, de Freitas Gil RP, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98(6):1291–1297CrossRefGoogle Scholar
  24. Kim D, Moreno N, Nunes SP (2016) Fabrication of polyacrylonitrile hollow fiber membranes from ionic liquid solutions. Polym Chem 7(1):113–124CrossRefGoogle Scholar
  25. Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4(4):281–292CrossRefGoogle Scholar
  26. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4(10):3393–3410CrossRefGoogle Scholar
  27. Leng Y, Wang J, Zhu D, Ren X, Ge H, Shen L (2009) Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification. Angew Chem Int Edit 48(1):168–171CrossRefGoogle Scholar
  28. Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2014) Complete chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments. ChemSusChem 7(12):3467–3475CrossRefGoogle Scholar
  29. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRefGoogle Scholar
  30. Morris CE, Morris NM, TraskMorrell BJ (1996) Interaction of meso-1,2,3,4-butanetetracarboxylic acid with phosphorus-containing catalysts for esterification cross-linking of cellulose. Ind Eng Chem Res 35(3):950–953CrossRefGoogle Scholar
  31. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefGoogle Scholar
  32. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306CrossRefGoogle Scholar
  33. Nowakowski DJ, Woodbridge CR, Jones JM (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. J Anal Appl Pyrol 83(2):197–204CrossRefGoogle Scholar
  34. Patyk E, Katrusiak A (2015) Transformable H-bonds and conformation in compressed glucose. Chem Sci 6(3):1991–1995CrossRefGoogle Scholar
  35. Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1(11):1566–1580CrossRefGoogle Scholar
  36. Rowell RM (1994) Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell-wall components to acetic anhydried. Wood Fiber Sci 26(1):11–18Google Scholar
  37. Saddawi A, Jones JM, Williams A (2012) Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol 104:189–197CrossRefGoogle Scholar
  38. Sehaqui H, Kulasinski K, Pfenninger N, Zimmermann T, Tingaut P (2017) Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromol 18(1):242–248CrossRefGoogle Scholar
  39. Sun RC, Tomkinson J, Wang SQ, Zhu W (2000) Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym Degra. Stabil 67(1):101–109CrossRefGoogle Scholar
  40. Uschanov P, Johansson L, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18(2):393–404CrossRefGoogle Scholar
  41. Zhang W, Liang M, Lu C (2007) Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14(5):447–456CrossRefGoogle Scholar
  42. Zhang Y, Gan T, Luo Y, Zhao X, Hu H, Huang Z, Huang A, Qin X (2014) A green and efficient method for preparing acetylated cassava stillage residue and the production of all-plant fibre composites. Compos Sci Technol 102:139–144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Tao Gan
    • 1
  • Yanjuan Zhang
    • 1
  • Yang Su
    • 1
  • Huayu Hu
    • 1
  • Aimin Huang
    • 1
  • Zuqiang Huang
    • 1
  • Dong Chen
    • 2
  • Mei Yang
    • 1
  • Juan Wu
    • 1
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  2. 2.State Key Laboratory of Non-Food Biomass and Enzyme TechnologyGuangxi Academy of SciencesNanningChina

Personalised recommendations