Advertisement

Cellulose

, Volume 24, Issue 12, pp 5579–5592 | Cite as

Morphology control of polyaniline by dopant grown on hollow carbon fibers as high-performance supercapacitor electrodes

  • Weibing Xu
  • Bin MuEmail author
  • Aiqin WangEmail author
Original Paper

Abstract

The various morphologies of polyaniline are grown on carbon fibers derived from natural hollow cellulose by in situ polymerization of aniline. The morphologies of nanofibers, pyramid-like, nanorods and nanowires can be facilely controlled by the doping of hydrochloric acid, sulfuric acid, perchloric acid, phosphoric acid and p-toluenesulfonic acid, respectively. The perchloric acid doped composite shown the maximum specific capacitance of 580 F g−1 at 1.0 A g−1. Remarkably, the all solid-state supercapacitors based on this sample deliver a maximum energy density of 13.3 Wh kg−1. The excellent performance is attributed to the unique morphology and hollow structure of the conductive substrate, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive.

Keywords

Kapok fiber Hollow carbon fibers Polyaniline Morphology control Supercapacitors 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 51,303,190).

Supplementary material

10570_2017_1505_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1450 kb)

Supplementary material 2 (MP4 1530 kb)

References

  1. Chen W, Rakhi RB, Alshareef HN (2013) Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures. J Phys Chem C 117:15009–15019CrossRefGoogle Scholar
  2. Cheng P, Li T, Yu H, Zhi L, Liu ZH, Lei ZB (2016) Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors. J Phys Chem C 120:2079–2086CrossRefGoogle Scholar
  3. Choi BG, Hong J, Hong WH, Hammond PT, Park H (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213PubMedCrossRefGoogle Scholar
  4. Cong HP, Ren XC, Wang P (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6:1185–1191CrossRefGoogle Scholar
  5. Dhawale DS, Vinu A, Lokhande CD (2011) Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim Acta 56:9482–9487CrossRefGoogle Scholar
  6. Du P, Liu HC, Yi C, Wang K, Gong X (2015) Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl Mater Interfaces 7:23932–23940PubMedCrossRefGoogle Scholar
  7. Gao SY, He SY, Zang PY, Dang LQ, Shi F, Xu H, Liu ZH, Lei ZB (2016) Polyaniline nanorods grown on hollow carbon fibers as high-performance supercapacitor electrodes. Chem Electro Chem 3:1142–1149Google Scholar
  8. Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159:1717–1722CrossRefGoogle Scholar
  9. Hamedi M, Karabulut E, Marais A, Herland A, NystrÖm G, Wagberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52:12038–12042CrossRefGoogle Scholar
  10. He S, Hu X, Chen S, Hu H, Hanif M, Hou HJ (2012) Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. J Mater Chem 22:5114–5120CrossRefGoogle Scholar
  11. Hui N, Chai FL, Lin PP, Song ZL, Sun XT, Li YN, Niu SY, Luo XL (2016) Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim Acta 199:234–241CrossRefGoogle Scholar
  12. Hung PJ, Chang K, Lee YF, Hu CC, Lin KM (2010) Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochim Acta 55:6015–6021CrossRefGoogle Scholar
  13. Jaidev JR, Mishra AK, Ramaprabhu S (2011) Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J Mater Chem 21:17601–17605CrossRefGoogle Scholar
  14. Kang ET, Neoh KG, Tan KL (1993a) X-ray photoelectron spectroscopic studies of electroactive polymers. In: Polymer characteristics. Advances in Polymer Science, vol106. Springer, Berlin, HeidelbergGoogle Scholar
  15. Kang ET, Neoh KG, Tan KL (1993b) Polyaniline with high intrinsic oxidation state. Surf Interface Anal 20:833–840CrossRefGoogle Scholar
  16. Ko JW, Lee BI, Chung YJ, Park CB (2015) Carboxymethyl cellulose-templated synthesis of hierarchically structured metal oxides. Green Chem 17:4167–4172CrossRefGoogle Scholar
  17. Lei Z, Chen Z, Zhao XS (2010) Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C 114:19867–19874CrossRefGoogle Scholar
  18. Lei Z, Sun X, Wang H, Liu Z, Zhao X (2013) Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline. ACS Appl Mater Interfaces 5:7501–7508PubMedCrossRefGoogle Scholar
  19. Li YZ, Zhao X, Xu Q, Zhang QH, Chen DJ (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463PubMedCrossRefGoogle Scholar
  20. Li M, Huang X, Wu C (2012a) Fabrication of two-dimensional hybrid sheets by decorating insulating PANI on reduced graphene oxide for polymer nanocomposites with low dielectric loss and high dielectric constant. J Mater Chem 22:23477–23484CrossRefGoogle Scholar
  21. Li Y, Zhao X, Yu P (2012b) Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 29:493–500PubMedCrossRefGoogle Scholar
  22. Li L, Raji AR, Fei H, Yang Y, Samuel EL, Tour JM (2013) Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mater Interfaces 5:6622–6627PubMedCrossRefGoogle Scholar
  23. Lim SL, Tan KL, Kang ET (1998) In situ XPS study of the interactions of evaporated copper atoms with neutral and protonated polyaniline films. Langmuir 14:5305–5313CrossRefGoogle Scholar
  24. Lin W, Xu K, Peng J, Xing Y, Gao S, Ren Y, Chen M (2015) Hierarchically structured carbon nanofiber–silsesquioxane–polyaniline nanohybrids for flexible supercapacitor electrodes. J Mater Chem A 3:8438–8449CrossRefGoogle Scholar
  25. Liu M, Miao YE, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T (2013) Hierarchical composites of polyaniline–graphene nanoribbons–carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale 5:7312–7320PubMedCrossRefGoogle Scholar
  26. Liu Y, Ma Y, Guang S (2014) Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes. J Mater Chem A 2:813–823CrossRefGoogle Scholar
  27. Liu JP, Ren YQ, Ren ZH, Wang SG, Qiu YJ, Yu J (2015) Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors. J Mater Chem A 3:23307–23315CrossRefGoogle Scholar
  28. Luo X, Killard AJ, Morrin A, Smyth MR (2007) Electrochemical preparation of distinct polyaniline nanostructures by surface charge control of polystyrene nanoparticle templates. Chem Commun 30:3207–3209CrossRefGoogle Scholar
  29. MacDiarmid AG, Chiang JC, Richter AF, Epstein AA (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290CrossRefGoogle Scholar
  30. Meng YN, Wang K, Zhang YM, Wei ZX (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25:6985–6990CrossRefGoogle Scholar
  31. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Common 51:12365–12368CrossRefGoogle Scholar
  32. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastian J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., MinnesotaGoogle Scholar
  33. Neoh KG, Kang ET, Tan KL (1991) Structural study of polyaniline films in reprotonation/deprotonation cycles. J Phys Chem C 95:10151–10156CrossRefGoogle Scholar
  34. Ning G, Li T, Yan J, Xu C, Wei T, Fan Z (2013) Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors. Carbon 54:241–248CrossRefGoogle Scholar
  35. Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150PubMedCrossRefGoogle Scholar
  36. Nordin NAM, Adnan NF, Alias A, Isahak W, Roslam WN, Salimon J, Kamaruddin RA (2011) New silica supported HClO4 as efficient catalysts for estolide synthesis from oleic acid. Adv Mater Res 173:140–145CrossRefGoogle Scholar
  37. Park HW, Kim T, Huh J, Kang M, Lee JE, Yoon H (2012) Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 6:7624–7633PubMedCrossRefGoogle Scholar
  38. Pouget JP, Jozefowicz ME, Epstein AJ (1991) X-ray structure of polyaniline. Macromolecules 24:779–789CrossRefGoogle Scholar
  39. Ramkumar R, Minakshi M (2015) Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans 44:6158–6168PubMedCrossRefGoogle Scholar
  40. Ramkumar R, Sundaram MM (2016) Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New J Chem 40:7456–7464CrossRefGoogle Scholar
  41. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 103:305–309CrossRefGoogle Scholar
  42. Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl Mater Interfaces 5:8467–8476PubMedCrossRefGoogle Scholar
  43. Sk M, Yue CY (2014) Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: a mechanistic study and application in electrochemical supercapacitors. J Mater Chem A 2:2830–2838CrossRefGoogle Scholar
  44. Sun LJ, Liu XX, Lau KKT, Chen L, Gu WM (2008) Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochim Acta 53:3036–3042CrossRefGoogle Scholar
  45. Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248CrossRefGoogle Scholar
  46. Verma ML, Minakshi M, Singh NK (2014) Structural and electrochemical properties of nanocomposite polymer electrolyte for electrochemical devices. Ind Eng Chem Res 39:14993–15001CrossRefGoogle Scholar
  47. Vonlanthen D, Lazarev PI, See KA, Wudl F, Heeger AJ (2014) A stable polyaniline–benzoquinone–hydroquinone supercapacitor. Adv Mater 30:5095–5100CrossRefGoogle Scholar
  48. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623CrossRefGoogle Scholar
  49. Wang K, Huang J, Wei ZJ (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067CrossRefGoogle Scholar
  50. Wang JG, Yang Y, Huang ZH, Kang FJ (2012a) Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J Power Sources 204:236–243CrossRefGoogle Scholar
  51. Wang ZL, Guo R, Li GR (2012b) Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. J Mater Chem 22:2401–2404CrossRefGoogle Scholar
  52. Wang Y, Yang X, Qiu L (2013) Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ Sci 6:477–481CrossRefGoogle Scholar
  53. Wang K, Wu H, Meng Y, Wei Z (2014a) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31PubMedCrossRefGoogle Scholar
  54. Wang Q, Yan J, Fan Z, Wei T, Zhang M, Jing X (2014b) Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. J Power Sources 247:197–203CrossRefGoogle Scholar
  55. Wang HH, Ma L, Gan MY, Zhou T, Sun XW, Dai WQ, Wang HN, Wang SY (2016) Design and assembly of reduced graphene oxide/polyaniline/urchin-like mesoporous TiO2 spheres ternary composite and its application in supercapacitors. Compos Part B Eng 92:405–412CrossRefGoogle Scholar
  56. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970CrossRefGoogle Scholar
  57. Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 125:2997–3001CrossRefGoogle Scholar
  58. Xu H, Li JL, Peng ZJ, Zhuang JX, Zhang JL (2013) Investigation of polyaniline films doped with Ni2+ as the electrode material for electrochemical supercapacitors. Electrochim Acta 90:393–399CrossRefGoogle Scholar
  59. Xu WB, Mu B, Wang AQ (2016) Porous carbon nanoflakes with a high specific surface area derived from a kapok fiber for high-performance electrode materials of supercapacitors. RSC Adv 6:6967–6977CrossRefGoogle Scholar
  60. Xu WB, Mu B, Wang AQ (2017) Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochim Acta 224:113–124CrossRefGoogle Scholar
  61. Xuan S, Wang YXJ, Leung KCF (2008) Synthesis of Fe3O4@polyaniline core/shell microspheres with well-defined blackberry-like morphology. J Phys Chem C 112(48):18804–18809CrossRefGoogle Scholar
  62. Yu P, Zhao X, Huang Z, Li Y, Zhang Q (2014) Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J Mater Chem A 2:14413–14420CrossRefGoogle Scholar
  63. Zhang J, Jiang J, Li H (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4:4009–4015CrossRefGoogle Scholar
  64. Zang XB, Li X, Zhu M, Li XM, Zhen Z, He YJ, Wang KL, Wang JQ, Kang FY, Zhu HW (2015a) Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7:7318–7322PubMedCrossRefGoogle Scholar
  65. Zhang Z, Zhang Y, Yang K, Yi K, Zhou Z, Huang A, Mai K, Lu X (2015b) Three-dimensional carbon nanotube/ethylvinylacetate/polyaniline as a high performance electrode for supercapacitors. J Mater Chem A 3:1884–1889CrossRefGoogle Scholar
  66. Zhao Y, Arowo M, Wu W, Chen JF (2015) Effect of additives on the properties of polyaniline nanofibers prepared by high gravity chemical oxidative polymerization. Langmuir 31:5155–5163PubMedCrossRefGoogle Scholar
  67. Zheng YA, Wang JT, Zhu YF, Wang AQ (2015) Research and application of kapok fiber as an absorbing material: a mini review. J Environ Sci 27:21–32CrossRefGoogle Scholar
  68. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations