, Volume 24, Issue 10, pp 4337–4353 | Cite as

Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production

  • Mustafa Germec
  • Fadime Demirel
  • Nurullah Tas
  • Ali Ozcan
  • Cansu Yilmazer
  • Zeynep Onuk
  • Irfan TurhanEmail author
Original Paper


Microwave-assisted pretreatment can be used for fermentable sugar production from lignocellulosic biomass. In this study, the optimum hydrolysis conditions of barley husk, oat husk, wheat bran, and rye bran were determined in power level, treatment time, solid-to-liquid ratio and dilute acid ratio as follows: 700 W, 6.92 min, 1:18.26 w/v, and 3.67% for barley husk, 600 W, 6.96 min, 1:17.22 w/v, and 3.47% for oat husk, 600 W, 6.92 min, 1:16.69 w/v, and 1.85% for wheat bran, and 460 W, 6.15 min, 1:17.14 w/v, and 2.72% for rye bran. The fermentable sugar concentrations were 37.21 (0.68 g/g), 38.84 (0.67 g/g), 49.65 (0.83 g/g), and 36.27 g/L (0.62 g/g) under optimum conditions, respectively. The results showed that microwave-assisted pretreatment is a promising technology which can be successfully implemented for the hydrolysis of lignocellulosic biomass for high sugar yield. On the other hand, hydrolysates included some inhibitors such as organic acids, furans, and phenolic compounds. Lignocellulosic biomass used in this study can be employed as good feedstocks for value-added product production in the fermentation process, after the inhibitors have been detoxified/removed with different detoxification methods.


Microwave-assisted pretreatment Response surface methodology Fermentable sugar Chemical composition 



This study was supported by the Akdeniz University Research Foundation.


  1. Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846CrossRefGoogle Scholar
  2. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250CrossRefGoogle Scholar
  3. Chaud LCS, Silva DDVd, Mattos RTd, Felipe MdGdA (2012) Evaluation of oat hull hemicellulosic hydrolysate fermentability employing Pichia stipitis. Braz Arch Biol Technol 55:771–777CrossRefGoogle Scholar
  4. Chen WH, Tu YJ, Sheen HK (2011) Distruption of sugarcane bagasse lignocellulose structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734CrossRefGoogle Scholar
  5. Chen WH, Ye SC, Sheen HK (2012) Hydrolysis characteristic of sugarcane bagasse pretreated by dilute acid solution in a microwve irridiation environment. Appl Energy 93:237–244CrossRefGoogle Scholar
  6. Cruz JM, Moldes AB, Bustos G, Torrado A, Domínguez JM (2007) Integral utilisation of barley husk for the production of food additives. J Sci Food Agric 87:1000–1008CrossRefGoogle Scholar
  7. Falck P, Aronsson A, Grey C, Stålbrand H, Karlsson EN, Adlercreutz P (2014) Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase. Bioresour Technol 174:118–125CrossRefGoogle Scholar
  8. FAOSTAT (2016) Accessed 04.Aug.2016
  9. Germec M et al (2016a) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882CrossRefGoogle Scholar
  10. Germec M, Tarhan K, Yatmaz E, Tetik N, Karhan M, Demirci A, Turhan I (2016b) Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnol Prog 32(2):393–403CrossRefGoogle Scholar
  11. Inan H, Turkay O, Akkiris C (2014) Microwave and microwave-alkali effect on barley straw for total sugar yield. Int J Glob Warm 6:212–221CrossRefGoogle Scholar
  12. Jacquemin L, Mogni A, Zeitoun R, Guinot C, Sablayrolles C, Saulnier L, Pontalier P-Y (2015) Comparison of different twin-screw extraction conditions for the production of arabinoxylans. Carbohydr Polym 116:86–94CrossRefGoogle Scholar
  13. Jiang S, Guo N, X-j Li (2016) The saccharification of destarched wheat bran with microwave-assisted acid treatment. Energy Sour A 38:209–213CrossRefGoogle Scholar
  14. Kajala I et al (2016) Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl Microbiol Biotechnol 100:3499–3510CrossRefGoogle Scholar
  15. Kamal-Eldin A et al (2009) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr Res 53(1):1912. doi: 10.3402/fnr.v53i0.1912 CrossRefGoogle Scholar
  16. Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546CrossRefGoogle Scholar
  17. Kumar R, Tabatabaei M, Karimi K, Horvath IS (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofule Res J 9:347–356CrossRefGoogle Scholar
  18. Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211CrossRefGoogle Scholar
  19. Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–A green and efficient way to pretreat biomass. Bioresour Technol 199:34–41CrossRefGoogle Scholar
  20. Liu CZ, Cheng XY (2010) Improved hydrogen production via thermofilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952CrossRefGoogle Scholar
  21. Loow Y-L, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016a) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520CrossRefGoogle Scholar
  22. Loow Y-L, Wu TY, Yang GH, Jahim JM, Teoh WH, Mohammad AW (2016b) Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23:2761–2789CrossRefGoogle Scholar
  23. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  24. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10CrossRefGoogle Scholar
  25. Palmarola-Adrados B, Galbe M, Zacchi G (2005) Pretreatment of barley husk for bioethanol production. J Chem Technol Biotechnol 80:85–91CrossRefGoogle Scholar
  26. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762CrossRefGoogle Scholar
  27. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102CrossRefGoogle Scholar
  28. Ruiling S, Jilin D, Zhangcun W (2006) The study of the microwave-assisted extraction of naked oat bran β-glucan. Chin Agric Sci Bull 10:075Google Scholar
  29. Serna-Saldivar SO (2016) Cereal grains: properties, processing, and nutritional attributes, chap 1. CRC, Baca Raton, FL, pp 4–7Google Scholar
  30. Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRefGoogle Scholar
  31. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  32. Sipponen MH, Pastinen OA, Strengell R, Hyötyläinen JM, Heiskanen IT, Laakso S (2010) Increased water resistance of CTMP fibers by oat (Avena sativa L.) husk lignin. Biomacromolecules 11:3511–3518CrossRefGoogle Scholar
  33. Sluiter A et al. (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory Technical Report No. NREL/TP-510-42621:1–6Google Scholar
  34. Wang W, Klopfenstein C (1993) Effect of twin-screw extrusion on the nutritional quality of wheat, barley, and oats. Cereal Chem 70(6):712–715Google Scholar
  35. Welch RW, Hayward MV, Jones DIH (1983) The composition of oat husk and its variation due to genetic and other factors. J Sci Food Agric 34:417–426CrossRefGoogle Scholar
  36. Wood IP, Cook NM, Wilson DR, Ryden P, Robertson JA, Waldron KW (2016) Ethanol from a biorefinery waste stream: saccharification of amylase, protease and xylanase treated wheat bran. Food Chem 198:125–131CrossRefGoogle Scholar
  37. Zhang Z, Vancov V, Mackintosh S, Basu B, Lali A, Qian G, Hubson P, Doherty WOS (2016) Assesing dilute acid pretreatment of different lignocellulosic biomasses for enhanced sugar production. Cellulose 23:3771–3783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mustafa Germec
    • 1
    • 2
  • Fadime Demirel
    • 1
  • Nurullah Tas
    • 1
  • Ali Ozcan
    • 1
  • Cansu Yilmazer
    • 1
  • Zeynep Onuk
    • 1
  • Irfan Turhan
    • 1
    Email author
  1. 1.Department of Food EngineeringAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Food EngineeringCankiri Karatekin UniversityCankiriTurkey

Personalised recommendations