Advertisement

Cellulose

, Volume 24, Issue 8, pp 3367–3376 | Cite as

Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods

  • Giuseppe CavallaroEmail author
  • Giuseppe Lazzara
  • Stefana Milioto
  • Filippo Parisi
  • Fabio Ruisi
Original Paper

Abstract

We have designed an innovative protocol for the consolidation of waterlogged archaeological woods by using acetone mixtures of halloysite clay nanotubes and a chemically modified colophony (Rosin). Firstly, we have investigated the thermal properties of HNTs/Rosin nanocomposites, which have been prepared by means of the casting method from acetone. The HNTs content have been systematically changed in order to study the influence of the inorganic filler on the thermal stability and glass transition process of Rosin. We have observed that the thermal properties of the hybrids are affected by the specific HNTs/Rosin interactions. Then, acetone dispersions of HNTs/Rosin composites at variable filler content have been employed as consolidants for waterlogged archaeological woods. The quantitative analysis of the thermogravimetric curves have provided the amount of consolidants entrapped into the wood structure. These results have been successfully correlated to the consolidation efficiencies estimated from the analysis of the wood shrinkage volume upon drying. The attained knowledge represents the basic step to develop a green protocol for the long term protection of wooden art-works.

Keywords

Waterlogged archaeological woods Esterified colophony Halloysite nanotubes Nanocomposites 

Notes

Acknowledgments

The work was financially supported by the University of Palermo, PON-TECLA (PON03PE_00214_1). The authors have no conflicts of interest to declare.

Supplementary material

10570_2017_1369_MOESM1_ESM.docx (241 kb)
Supplementary material 1 (DOCX 240 kb)

References

  1. Abdullayev E, Joshi A, Wei W et al (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226. doi: 10.1021/nn302328x CrossRefGoogle Scholar
  2. Aguzzi C, Viseras C, Cerezo P et al (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Coll Surf B Biointerfaces 105:75–80. doi: 10.1016/j.colsurfb.2012.12.041 CrossRefGoogle Scholar
  3. Arcudi F, Cavallaro G, Lazzara G et al (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101. doi: 10.1021/jp504388e CrossRefGoogle Scholar
  4. Belver C, Aranda P, Ruiz-Hitzky E (2013) Silica–alumina/sepiolite nanoarchitectures. J Mater Chem A 1:7477–7487. doi: 10.1039/C3TA01686B CrossRefGoogle Scholar
  5. Bershtein VA, Egorova LM, Yakushev PN et al (2002) Molecular dynamics in nanostructured polyimide–silica hybrid materials and their thermal stability. J Polym Sci Part B Polym Phys 40:1056–1069. doi: 10.1002/polb.10162 CrossRefGoogle Scholar
  6. Bertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F (2017) Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir 33:3317–3323. doi: 10.1021/acs.langmuir.7b00600 CrossRefGoogle Scholar
  7. Biddeci G, Cavallaro G, Di Blasi F et al (2016) Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym 152:548–557. doi: 10.1016/j.carbpol.2016.07.041 CrossRefGoogle Scholar
  8. Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeterior Biodegrad 46:189–204. doi: 10.1016/S0964-8305(00)00077-9 CrossRefGoogle Scholar
  9. Blanco I, Abate L, Bottino FA, Bottino P (2012) Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. Polym Degrad Stab 97:849–855. doi: 10.1016/j.polymdegradstab.2012.03.041 CrossRefGoogle Scholar
  10. Blanco I, Abate L, Bottino FA (2016) Preparation and thermal characterization of three different series of novel polyhedral oligomeric silsesquioxanes/polystyrene nanocomposites. J Macromol Sci Part B 55:1111–1123. doi: 10.1080/00222348.2016.1242531 CrossRefGoogle Scholar
  11. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi: 10.1016/j.copbio.2010.10.009 CrossRefGoogle Scholar
  12. Cavallaro G, Donato DI, Lazzara G, Milioto S (2011a) A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim 104:451–457. doi: 10.1007/s10973-010-1229-3 CrossRefGoogle Scholar
  13. Cavallaro G, Lazzara G, Milioto S (2011b) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 27:1158–1167. doi: 10.1021/la103487a CrossRefGoogle Scholar
  14. Cavallaro G, Donato DI, Lazzara G, Milioto S (2013a) Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry. J Therm Anal Calorim 111:1449–1455. doi: 10.1007/s10973-012-2528-7 CrossRefGoogle Scholar
  15. Cavallaro G, Lisi R, Lazzara G, Milioto S (2013b) Polyethylene glycol/clay nanotubes composites. J Therm Anal Calorim 112:383–389. doi: 10.1007/s10973-012-2766-8 CrossRefGoogle Scholar
  16. Cavallaro G, Lazzara G, Milioto S, Parisi F (2014) Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim 117:1293–1298. doi: 10.1007/s10973-014-3865-5 CrossRefGoogle Scholar
  17. Cavallaro G, Lazzara G, Milioto S et al (2015a) Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym Degrad Stab 120:220–225. doi: 10.1016/j.polymdegradstab.2015.07.007 CrossRefGoogle Scholar
  18. Cavallaro G, Lazzara G, Milioto S, Parisi F (2015b) Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion. Langmuir 31:7472–7478. doi: 10.1021/acs.langmuir.5b01181 CrossRefGoogle Scholar
  19. Cavallaro G, Lazzara G, Milioto S, Parisi F (2016) Halloysite nanotubes with fluorinated cavity: an innovative consolidant for paper treatment. Clay Miner 51:445. doi: 10.1180/claymin.2016.051.3.01 CrossRefGoogle Scholar
  20. Christensen M, Kutzke H, Hansen FK (2012) New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. J Cult Herit 13:S183–S190. doi: 10.1016/j.culher.2012.02.013 CrossRefGoogle Scholar
  21. Cipriani G, Salvini A, Fioravanti M et al (2013) Synthesis of hydroxylated oligoamides for their use in wood conservation. J Appl Polym Sci 127:420–431. doi: 10.1002/app.37678 CrossRefGoogle Scholar
  22. Dedic D, Iversen T, Ek M (2013) Cellulose degradation in the Vasa: the role of acids and rust. Stud Conserv 58:308–313CrossRefGoogle Scholar
  23. Donato D, Lazzara G, Milioto S (2010) Thermogravimetric analysis. J Therm Anal Calorim 101:1085–1091CrossRefGoogle Scholar
  24. Duce C, Ghezzi L, Onor M et al (2012) Physico-chemical characterization of protein–pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Anal Bioanal Chem 402:2183–2193. doi: 10.1007/s00216-011-5684-x CrossRefGoogle Scholar
  25. Duce C, Vecchio Ciprioti S, Ghezzi L et al (2015) Thermal behavior study of pristine and modified halloysite nanotubes. J Therm Anal Calorim 121:1011–1019. doi: 10.1007/s10973-015-4741-7 CrossRefGoogle Scholar
  26. Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11:2243–2246. doi: 10.2217/nnm-2016-0250 CrossRefGoogle Scholar
  27. Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF (2015) Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci: Nano 2:54–59. doi: 10.1039/C4EN00135D Google Scholar
  28. Fragiadakis D, Pissis P (2007) Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. J Non Cryst Solids 353:4344–4352. doi: 10.1016/j.jnoncrysol.2007.05.183 CrossRefGoogle Scholar
  29. Gelbrich J, Mai C, Militz H (2008) Chemical changes in wood degraded by bacteria. Int Biodeterior Biodegrad 61:24–32. doi: 10.1016/j.ibiod.2007.06.007 CrossRefGoogle Scholar
  30. Giachi G, Capretti C, Macchioni N et al (2010) A methodological approach in the evaluation of the efficacy of treatments for the dimensional stabilisation of waterlogged archaeological wood. J Cult Herit 11:91–101. doi: 10.1016/j.culher.2009.04.003 CrossRefGoogle Scholar
  31. Giachi G, Capretti C, Donato ID et al (2011) New trials in the consolidation of waterlogged archaeological wood with different acetone-carried products. J Archaeol Sci 38:2957–2967. doi: 10.1016/j.jas.2011.06.012 CrossRefGoogle Scholar
  32. Gorrasi G, Pantani R, Murariu M, Dubois P (2014) PLA/halloysite nanocomposite films: water vapor barrier properties and specific key characteristics. Macromol Mater Eng 299:104–115. doi: 10.1002/mame.201200424 CrossRefGoogle Scholar
  33. Grattan D, Bilz M, Grant T, Logan J (2006) Outcome determines treatment—an approach to the treatment of waterlogged wood. J Wetl Archaeol 6:49–63. doi: 10.1179/jwa.2006.6.1.49 CrossRefGoogle Scholar
  34. Joshi A, Abdullayev E, Vasiliev A et al (2013) Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir 29:7439–7448. doi: 10.1021/la3044973 CrossRefGoogle Scholar
  35. Joussein E, Petit S, Churchman GJ et al (2005) Halloysite clay minerals—a review. Clay Miner 40:383–426CrossRefGoogle Scholar
  36. Kryuchkova M, Danilushkina A, Lvov Y, Fakhrullin R (2016) Evaluation of toxicity of nanoclays and graphene oxide in vivo: a paramecium caudatum study. Environ Sci Nano 3:442–452. doi: 10.1039/C5EN00201J CrossRefGoogle Scholar
  37. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719. doi: 10.1016/j.progpolymsci.2013.05.009 CrossRefGoogle Scholar
  38. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250. doi: 10.1002/adma.201502341 CrossRefGoogle Scholar
  39. McKerrel H, Roger E, Varsaniy A (1972) The acetone/rosin method for conservation of waterlogged wood. Stud Conserv. doi: 10.1179/sic.1972.011 Google Scholar
  40. Mendoza Cuevaz A, Bernardini F, Gianoncelli A, Tuniz C (2015) Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-ray Spectrom 44:105–115. doi: 10.1002/xrs.2585 CrossRefGoogle Scholar
  41. Owoseni O, Nyankson E, Zhang Y et al (2014) Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Langmuir 30:13533–13541. doi: 10.1021/la503687b CrossRefGoogle Scholar
  42. Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57. doi: 10.1016/j.clay.2012.06.014 CrossRefGoogle Scholar
  43. Riggio M, Sandak J, Sandak A et al (2014) Analysis and prediction of selected mechanical/dynamic properties of wood after short and long-term waterlogging. Constr Build Mater 68:444–454. doi: 10.1016/j.conbuildmat.2014.06.085 CrossRefGoogle Scholar
  44. Rotaru A, Nicolaescu I, Rotaru P, Neaga C (2008) Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim 92:297–300. doi: 10.1007/s10973-007-8816-y CrossRefGoogle Scholar
  45. Sebestyén Z, Czégény Z, Badea E et al (2015) Thermal characterization of new, artificially aged and historical leather and parchment. J Anal Appl Pyrolysis 115:419–427. doi: 10.1016/j.jaap.2015.08.022 CrossRefGoogle Scholar
  46. Shamsi MH, Geckeler DV (2008) The first biopolymer-wrapped non-carbon nanotubes. Nanotechnology 19:075604CrossRefGoogle Scholar
  47. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95. doi: 10.1016/j.tifs.2006.09.004 CrossRefGoogle Scholar
  48. Vasiliev AN, Shvanskaya LV, Volkova OS et al (2017) Magnetism of natural composite of halloysite clay nanotubes Al2Si2O5(OH)4 and amorphous hematite Fe2O3. Mater Charact 129:179–185. doi: 10.1016/j.matchar.2017.04.028 CrossRefGoogle Scholar
  49. Walsh Z, Janeček E-R, Jones M, Scherman OA (2017) Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood. Stud Conserv 62:173–183. doi: 10.1179/2047058414Y.0000000149 CrossRefGoogle Scholar
  50. Wei W, Minullina R, Abdullayev E et al (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494. doi: 10.1039/C3RA45011B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Dipartimento di Fisica e ChimicaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations