Advertisement

Cellulose

, Volume 24, Issue 9, pp 3591–3618 | Cite as

Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion

  • Yu-Loong Loow
  • Eng Kein New
  • Ge Hoa Yang
  • Lin Yang Ang
  • Luther Yang Wei Foo
  • Ta Yeong WuEmail author
Review Paper

Abstract

High reliance on crude oil for energy consumption results in the urgent need to explore and develop alternative renewable sources. One of the most promising routes is the transformation of biomass into biofuels and chemicals. The introduction of deep eutectic solvents in 2004 received a considerable amount of attention across different research fields, particularly in biomass processing. The effectiveness of deep eutectic solvents in breaking down the recalcitrant structure in biomass highlights its impact on the transformation of biomass into various value-added products. In addition, deep eutectic solvents are widely regarded as promising “green” solvents due to their low cost, low toxicity, and biodegradable properties. In this paper, some background information on lignocellulosic biomass and deep eutectic solvents is given. Furthermore, the roles of deep eutectic solvents in biomass processing are discussed, focusing on the impacts of deep eutectic solvents on the selectivity of chemical processes and dissolution of biomass. This review also highlights the advantages and limitations of deep eutectic solvents associated with their usage in biomass valorization.

Keywords

Biomass valorization Biorefinery Cellulose Green solvent Hemicellulose Lignin 

Notes

Acknowledgments

The authors would like to thank the Department of Higher Education, Ministry of Education Malaysia, for sponsoring this study under Fundamental Research Grant Scheme of FRGS/1/2016/WAB01/MUSM/02/2. In addition, the authors would like to thank Monash University Malaysia for providing Y.-L. Loow with a Master’s scholarship. Also, the authors would like to thank School of Engineering for providing UROP to E.K. New, G.H. Yang and L.Y.W. Foo an early opportunity to undergo a research experience at Monash University Malaysia.

References

  1. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147CrossRefGoogle Scholar
  2. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872CrossRefGoogle Scholar
  3. Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567CrossRefGoogle Scholar
  4. Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 23:44–53CrossRefGoogle Scholar
  5. Alhassan Y, Kumar N, Bugaje IM (2016) Hydrothermal liquefaction of de-oiled Jatropha curcas cake using deep eutectic solvents (DESs) as catalysts and co-solvents. Bioresour Technol 199:375–381CrossRefGoogle Scholar
  6. Alomar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103CrossRefGoogle Scholar
  7. Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy KK, Wolcott M, Zhang X (2016) Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem 18:5133–5141CrossRefGoogle Scholar
  8. Assanosi AA, Farah MM, Wood J, Al-Duri B (2014) A facile acidic choline chloride–p-TSA DES-catalysed dehydration of fructose to 5-hydroxymethylfurfural. RSC Adv 4:39359–39364CrossRefGoogle Scholar
  9. Assanosi AA, Farah MM, Wood J, Al-Duri B (2016) Fructose dehydration to 5HMF in a green self-catalysed DES composed of N,N-diethylethanolammonium chloride and p-toluenesulfonic acid monohydrate (p-TSA). C R Chim 19:450–456CrossRefGoogle Scholar
  10. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875CrossRefGoogle Scholar
  11. Brandt A, Grasvik J, Hallett J, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583CrossRefGoogle Scholar
  12. Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12CrossRefGoogle Scholar
  13. Bubalo MC, Curko N, Tomasevic M, Ganic KK, Redovnikovic IR (2016) Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem 200:159–166CrossRefGoogle Scholar
  14. Cheburini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421CrossRefGoogle Scholar
  15. Choi YH, Spronsen JV, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705CrossRefGoogle Scholar
  16. Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92CrossRefGoogle Scholar
  17. Clark J, Deswarte F (2015) Biomass as a feedstock. In: Clark J, Deswarte F (eds) Introduction to chemicals from biomass, 2nd edn. Wiley, Cornwell, pp 32–52Google Scholar
  18. Constant S, Wienk HLJ, Frissen AE, Peinder PD, Boelens R, Es DSV, Grisel RJH, Weckhuysen BM, Huijgen WJJ, Gosselink RJA, Bruijnincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18(9):2651–2665CrossRefGoogle Scholar
  19. Crawford DE, Wright LA, James SL, Abbott AP (2016) Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chem Commun 52:4215–4218CrossRefGoogle Scholar
  20. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013a) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68CrossRefGoogle Scholar
  21. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2013b) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem 85(13):6272–6278CrossRefGoogle Scholar
  22. Dai Y, Witkamp GJ, Verpoorte R, Choi YH (2015) Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem 187:14–19CrossRefGoogle Scholar
  23. de Maria PD (2014) Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol 89(1):11–18CrossRefGoogle Scholar
  24. Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energy Source A 30:27–37CrossRefGoogle Scholar
  25. Duan L, Dou LL, Guo L, Li P, Liu EH (2016) Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng 4:2405–2411CrossRefGoogle Scholar
  26. Durand E, Lecomte J, Barea B, Piombo G, Dubreucq E, Villeneuve P (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem 47:2081–2089CrossRefGoogle Scholar
  27. Espino M, de los Ángeles Fernández M, Gomez FJV, Silva MF (2016) Natural designer solvents for greening analytical chemistry. Trends Anal Chem 76:126–136CrossRefGoogle Scholar
  28. Feldman D, Banu D, Natansohn A, Wang J (1991) Structure–properties relations of thermally cured epoxy–lignin polyblends. J Appl Polym Sci 42:1537–1550CrossRefGoogle Scholar
  29. Fischer V (2016) Properties and applications of deep eutectic solvents and low-melting mixtures. http://epub.uni-regensburg.de/31832/1/Doktorarbeit_Veronika_Fischer_04_05_15.pdf. Accessed 5 July 2016
  30. Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14(8):2153–2157CrossRefGoogle Scholar
  31. Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644CrossRefGoogle Scholar
  32. Guajardo N, Muller CR, Schrebler R, Carlesi C, de Maria PD (2016) Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations. ChemCatChem 8:1020–1027CrossRefGoogle Scholar
  33. Guerrero AB, Aguado PL, Sánchez J, Curt MD (2016) GIS-based assessment of banana residual biomass potential for ethanol production and power generation: a case study. Waste Biomass Valoriz 7(2):405–415CrossRefGoogle Scholar
  34. Gunny AAN, Arbain D, Daud MZM, Jamal P (2014) Synergistic action of deep eutectic solvents and cellulases for lignocellulosic biomass hydrolysis. Mater Res Innov 18:S6-65–S6-67CrossRefGoogle Scholar
  35. Gunny AAN, Arbain D, Nashef EM, Jamal P (2015) Applicability evaluation of deep eutectic solvents–cellulase system for lignocellulose hydrolysis. Bioresour Technol 181:297–302CrossRefGoogle Scholar
  36. Gutierrez MC, Ferrer ML, Mateo CR, Monte FD (2009) Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25:5509–5515CrossRefGoogle Scholar
  37. Hayyan M, Mjalli FS, Hashim MA, AlNashef I (2010) A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol 91:116–120CrossRefGoogle Scholar
  38. Hayyan A, Mjalli FS, Alnashef IM, Al-Wahaibi YM, Al-Wahaibi T, Hashim MA (2013a) Glucose-based deep eutectic solvents: physical properties. J Mol Liq 178:137–141CrossRefGoogle Scholar
  39. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani ME, Saheed OK (2013b) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195CrossRefGoogle Scholar
  40. He Y, Zhang J, Bao J (2014) Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation. Bioresour Technol 158:360–364CrossRefGoogle Scholar
  41. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefGoogle Scholar
  42. Hong S, Lian H, Sun X, Pan D, Carranza A, Pojman JA, Mota-Morales JD (2016) Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Adv 6:89599–89608CrossRefGoogle Scholar
  43. Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10:1280–1283CrossRefGoogle Scholar
  44. Huang ZL, Wu BP, Wen Q, Yang TX, Yang Z (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89:1975–1981CrossRefGoogle Scholar
  45. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948–1954CrossRefGoogle Scholar
  46. Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8(2):3157–3176CrossRefGoogle Scholar
  47. Jablonsky M, Skulcova A, Kamenska L, Vrska M, Sima J (2015) Deep eutectic solvents: fractionation of wheat straw. BioResources 10(4):8039–8047CrossRefGoogle Scholar
  48. Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245–1259CrossRefGoogle Scholar
  49. Kabongo JD (2013) Waste valorization. In: Idowu SO, Capaldi N, Zu L, Gupta AD (eds) Encyclopedia of corporate social responsibility. Springer, Heidelberg, pp 2701–2706 Google Scholar
  50. Krystof M, Perez-Sanchez M, de Maria PD (2013) Lipase-catalyzed (trans)esterification of 5-hydroxymethylfurfural and separation from HMF esters using deep-eutectic solvents. ChemSusChem 6:630–634CrossRefGoogle Scholar
  51. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  52. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23(10):9265–9275CrossRefGoogle Scholar
  53. Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversion into added value products. Appl Microbiol Biotechnol 97(14):6129–6147CrossRefGoogle Scholar
  54. Lin Z, Hou Y, Ren S, Ji Y, Yao C, Niu M, Wu W (2016) Phase equilibria of phenol + toluene + quaternary ammonium salts for the separation of phenols from oil with forming deep eutectic solvents. Fluid Phase Equilib 429:67–75CrossRefGoogle Scholar
  55. Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–171CrossRefGoogle Scholar
  56. Liu F, Barrault J, Vigier KDO, Jerome F (2012) Dehydration of highly concentrated solutions of fructose to 5-hydroxymehtylfurfural in a cheap and sustainable choline chloride/carbon dioxide system. ChemSusChem 5(7):1223–1226CrossRefGoogle Scholar
  57. Loow Y-L, Wu TY (2017) Transformation of oil plam fronds into pentose sugars using copper (II) sulfate pentahydrate with the assistance of chemical additive. J Environ Manage. doi: 10.1016/j.jenvman.2017.04.084 Google Scholar
  58. Loow Y-L, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JM, Mohammad AW, Teoh WH (2015) Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem 63(8):8349–8363CrossRefGoogle Scholar
  59. Loow Y-L, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016a) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis or alkaline pretreatment. Cellulose 23:1491–1520CrossRefGoogle Scholar
  60. Loow Y-L, Wu TY, Yang GH, Jahim JM, Teoh WH, Mohammad AW (2016b) Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23:2761–2789CrossRefGoogle Scholar
  61. Loow Y-L, Wu TY, Lim YS, Tan KA, Siow LF, Jahim JM, Mohammad AW (2017) Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conv Manag 138:248–260CrossRefGoogle Scholar
  62. Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128CrossRefGoogle Scholar
  63. Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust 41(1):56–93CrossRefGoogle Scholar
  64. Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylose derived biochemical. Biofuels Bioprod Bioref 2:438–454CrossRefGoogle Scholar
  65. Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70(4):485–498CrossRefGoogle Scholar
  66. Maugeri Z, Leitner W, de Maria PD (2013) Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem 20:4223–4228CrossRefGoogle Scholar
  67. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv 35:105–134CrossRefGoogle Scholar
  68. Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM (2015) Cellulose from lignocellulosic wastes. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer, Switzerland, pp 475–511Google Scholar
  69. Mondal D, Sharma M, Wang CH, Lin YC, Huang HC, Saha A, Nataraj SK, Prasad K (2016) Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chem 18:2819–2826CrossRefGoogle Scholar
  70. Nam MW, Zhao J, Lee MS, Jeong JH, Lee J (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727CrossRefGoogle Scholar
  71. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071CrossRefGoogle Scholar
  72. Procentese A, Johnson E, Orr V, Garruto Campanile A, Wood JA, Marzocchella A, Rehmann L (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 192:31–36CrossRefGoogle Scholar
  73. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843CrossRefGoogle Scholar
  74. Selkala T, Sirvio JA, Lorite GS, Liimatainen H (2016) Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea–lithium chloride deep eutectic solvent. ChemSusChem 9:1–11CrossRefGoogle Scholar
  75. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011a) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81:216–222CrossRefGoogle Scholar
  76. Shahbaz K, Mjalli FS, Hashim MA, Alnashef IM (2011b) Prediction of deep eutectic solvents densities at different temperatures. Thermochim Acta 515(1–2):67–72CrossRefGoogle Scholar
  77. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011c) Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25(6):2671–2678CrossRefGoogle Scholar
  78. Sheldon RA (2016) Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J 22:12984–12999CrossRefGoogle Scholar
  79. Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277CrossRefGoogle Scholar
  80. Smith EL, Abbott AP, Ryder KS (2014) Deep Eutectic Solvents (DESs) and their applications. Chem Rev 114(21):11060–11082CrossRefGoogle Scholar
  81. Spronsen JV, Witkamp GJ, Hollmann F, Choi YH, Verpoorte R (2011) Process for extracting materials from biological material. Patent: WO 2011155829 (A1) European Patent OfficeGoogle Scholar
  82. Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Mon Chem 144(10):1427–1454CrossRefGoogle Scholar
  83. Tang BK, Park HE, Row KH (2014) Simultaneous extraction of flavonoids from Chamaecyparis obtusa using deep eutectic solvents as additives of conventional extractions solvents. J Chromatogr Sci 53:836–840CrossRefGoogle Scholar
  84. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38(6):1053–1064CrossRefGoogle Scholar
  85. Thompson W, Meyer S (2013) Second generation biofuels and food crops: co-products or competitors. Glob Food Secur 2:89–96CrossRefGoogle Scholar
  86. Vigier KDOD, Chatel GD, Jerome F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. Chem Cat Chem 7(8):1250–1260Google Scholar
  87. Wei Z, Qi X, Li T, Luo M, Wang W, Zu Y, Fu Y (2015) Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep Purif Technol 149:237–244CrossRefGoogle Scholar
  88. Wu BP, Wen Q, Xu H, Yang Z (2014) Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J Mol Catal B 101:101–107CrossRefGoogle Scholar
  89. Xia S, Baker GA, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv 4:10586–10596CrossRefGoogle Scholar
  90. Xia B, Yan D, Bai Y, Xie J, Cao Y, Liao D, Lin L (2015) Determination of phenolic acids in Prunella vulgaris L.: a safe and green extraction method using alcohol-based deep eutectic solvents. Anal Methods 7(21):9354–9364Google Scholar
  91. Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369CrossRefGoogle Scholar
  92. Yang J, Vigier KDO, Gu Y, Jerome F (2015) Catalytic dehydration of carbohydrates suspended in organic solvents promoted by AlCl3/SiO2 coated with choline chloride. ChemSusChem 8:269–274CrossRefGoogle Scholar
  93. Yao XH, Zhang DY, Duan MH, Cui Q, Xu WJ, Luo M, Li CY, Zu YG, Fu YJ (2015) Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Sep Purif Technol 149:116–123CrossRefGoogle Scholar
  94. Yusuf NNAN, Kamarudin SK, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manag 52:2741–2751CrossRefGoogle Scholar
  95. Zhang L, Yu H (2013) Conversion of xylan and xylose into furfural in biorenewable deep eutectic solvent with trivalent metal chloride added. BioResources 8(4):6014–6025Google Scholar
  96. Zhang Q, De Oliveira Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146CrossRefGoogle Scholar
  97. Zhang LX, Yu H, Yu HB, Chen Z, Yang L (2014) Conversion of xylose and xylan into furfural in biorenewable choline chloride–oxalic acid deep eutectic solvent with the addition of metal chloride. Chin Chem Lett 25(8):1132–1136CrossRefGoogle Scholar
  98. Zhang CW, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5CrossRefGoogle Scholar
  99. Zhao H, Baker GA, Holmes S (2011) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9:1908–1916CrossRefGoogle Scholar
  100. Zhao Q, Sun Z, Wang S, Huang G, Wang X, Jiang Z (2014) Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid-base bifunctional HPA nanocatalysts induced by choline chloride. RSC Adv 4:63055–63061CrossRefGoogle Scholar
  101. Zuo M, Li Z, Jiang Y, Tang X, Zeng X, Sun Y, Lin L (2016) Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Adv 6:27004–27007CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yu-Loong Loow
    • 1
  • Eng Kein New
    • 1
    • 2
  • Ge Hoa Yang
    • 1
    • 2
  • Lin Yang Ang
    • 1
  • Luther Yang Wei Foo
    • 1
    • 2
  • Ta Yeong Wu
    • 1
    Email author
  1. 1.Chemical Engineering Discipline, School of EngineeringMonash UniversityBandar SunwayMalaysia
  2. 2.Undergraduate Research Opportunities Program (UROP), School of EngineeringMonash UniversityBandar SunwayMalaysia

Personalised recommendations